КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принцип относительности и преобразования Галилея
Лекция 7. Элементы релятивистской механики. [1] гл 7 План лекции 1. Принцип относительности и преобразования Галилея. 2. Постулаты специальной теории относительности. 3. Преобразования Лоренца и следствия из них. 4. Основной закон релятивистской динамики. Закон взаимосвязи массы и энергии.
Галилей установил, что законы механики во всех ИСО имеют одинаковую форму. Для доказательства этого рассмотрим две ИСО: условно неподвижную xyz и движущуюся равномерно прямолинейно со скоростью относительно оси ОX первой системы x¢y¢z¢. В системе К ¢ точка М движется со скоростью относительно К¢. Положение точки М в К определяют координаты (x,y,z), в К¢ - (x¢,y¢,z¢). Если отсчет времени начать с того момента, когда начала координат О и О¢ совпадают, то преобразования, описывающие переход от одной ИСО к другой, следующие: - преобразования Галилея В классической механике предполагается, что ход времени не зависит от относительного движения СО, поэтому к преобразованиям координат добавлено соотношение t=t¢. Записанные соотношения справедливы только при . Продифференцируем их по времени или , или , или . Полученные три скалярные соотношения эквивалентны следующему векторному соотношению: , где - скорость точки М относительно СО xyz. Это соотношение представляет собой правило сложения скоростей в классической механике. Продифференцируем его по времени: Т.к. в классической механике масса не зависит от скорости, . Т.о. очевидно, что и второй закон Ньютона инвариантны относительно преобразований Галилея. Подобный анализ можно провести и для других законов механики и получить такой же результат. Т.о. уравнения (или законы) механики не изменяются (инвариантны) при переходе от одной ИСО к другой. Принцип относительности Галилея: все механические явления протекают во всех ИСО одинаково. Практически это проявляется в том, что никакими механическими опытами, проведенными в пределах данной ИСО, невозможно установить покоится данная ИСО или движется равномерно прямолинейно.
Дата добавления: 2014-01-20; Просмотров: 481; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |