Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ВВЕДЕНИЕ. 1) Задача прогнозирования временных рядов имеет высокую актуальность для многих предметных областей и является неотъемлемой частью повседневной работы многих

Выводы

1) Задача прогнозирования временных рядов имеет высокую актуальность для многих предметных областей и является неотъемлемой частью повседневной работы многих компаний.

2) Установлено, что к настоящему времени разработано множество моделей для решения задачи прогнозирования временного ряда, среди которых наибольшую применимость имеют авторегрессионные и нейросетевые модели.

3) Выявлены достоинства и недостатки рассмотренных моделей. Установлено, что существенным недостатком авторегрессионных моделей является большое число свободных параметров, требующих идентификации; недостатками нейросетевых моделей является ее непрозрачность моделирования и сложность обучения сети.

4) Определено, что наиболее перспективным направлением развития моделей прогнозирования с целью повышения точности является создание комбинированных моделей, выполняющих на первом этапе кластеризацию, а затем прогнозирование временного ряда внутри установленного кластера.

 

 

Тема 15. РЕГРЕССИЯ

Регрессия, это инструмент статистики, на субъективность которого информатики могут сваливать все свои ошибки.

Фарид Бадрутдинов. Татарин, Уральский геофизик.

Электронные мозги могут ошибаться гораздо точнее.

Габриэль Лауб. Немец, афорист.

Содержание

Введение.

1. Постановка задачи регрессии.

2. Линейная регрессия. Общий принцип. Реализация в Mathcad.

3. Полиномиальная регрессия. Одномерная регрессия. Зональная регрессия.

4. Нелинейная регрессия. Линейное суммирование произвольных функций. Регрессия общего типа. Типовые функции регрессии Mathcad.

5. Сглаживание данных.

6. Предсказание зависимостей.

Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.

Термин "регрессия" появился при исследовании соотношения роста родителей и их детей, в которых было установлено, что рост "регрессирует" к среднему, т.е. высокие родители имеют более низких детей, а низкие родители – более высоких.

В качестве основной математической системы для примеров будем использовать систему Mathcad.

<== предыдущая лекция | следующая лекция ==>
Комбинированные модели | Постановка задачи регрессии
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 576; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.