КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нелинейная регрессия. Полиномиальная регрессия
Полиномиальная регрессия Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов реализуется вычисленими по формуле:
На рис. 8.3.2. приведен пример полиномиальной регрессии с использованием полиномов 2, 3 и 8-й степени. Степень полинома обычно устанавливают не более 4-6 с последовательным повышением степени, контролируя среднеквадратическое отклонение функции аппроксимации от фактических данных. Нетрудно заметить, что по мере повышения степени полинома функция аппроксимации приближается к фактическим данным, а при степени полинома, равной количеству отсчетов данных минус 1, вообще превращается в функцию интерполяции данных, что не соответствует задачам регрессии.
Зональная регрессия. При больших координатных интервалах с большим количеством отсчетов и сложной динамике изменения данных рекомендуется применять последовательную локальную регрессию отрезками полиномов малых степеней. На рис. 8.3.3 приведен пример вычисления регрессии модельной кривой (отрезка синусоиды) в сумме с шумами. Параметр span определяет размер локальной области и подбирается с учетом характера данных и необходимой степени их сглаживания (чем больше span, тем больше степень сглаживания данных).
Линейное суммирование произвольных функций. В программных пакетах для инженерных вычислений, таких как MatLab, Mathcad и прочих имеется возможность выполнения регрессии с приближением к функции общего вида в виде весовой суммы функций. При этом сами функции fn(x) могут быть любого, в том числе нелинейного типа. С одной стороны, это резко повышает возможности аналитического отображения функций регрессии. Но, с другой стороны, это требует от пользователя определенных навыков аппроксимации экспериментальных данных комбинациями достаточно простых функций. Регрессия общего типа. Второй вид нелинейной регрессии реализуется путем подбора параметров к заданной функции аппроксимации с использованием функции, обеспечивающей минимальную среднеквадратическую погрешность приближения функции регрессии к входным данным (векторы Хи Y координат и отсчетов). Пример приведен на рис. 8.3.4, где G(x) – набор из трех экспонент.
Типовые функции регрессии. Для простых типовых формул аппроксимации предусмотрен ряд функций регрессии, в которых параметры функций подбираются программой самостоятельно. На рис. 8.3.5 приведен пример реализации синусоидальной регрессии модельного массива данных по базовой синусоиде f1(x) в сопоставлении с зональной регрессией полиномом второй степени f2(x). Как можно видеть из сопоставления методов по среднеквадратическим приближения к базовой кривой и к исходным данным, известность функции математического ожидания для статистических данных с ее использованием в качестве базовой для функции регрессии дает возможность с более высокой точностью определять параметры регрессии в целом по всей совокупности данных, хотя при этом кривая регрессии не отражает локальных особенностей фактических отсчетов данной реализации. Это имеет место и для всех других методов с заданием функций регрессии.
Дата добавления: 2014-01-20; Просмотров: 923; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |