Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Параллельность плоскостей

Взаимное положение плоскостей.

Две плоскости в пространстве могут пересекаться по собственной и несобственной прямой, следовательно они могут пересекаться или быть параллельными.

Из элементарной геометрии известна теорема (признак параллельности плоскостей):

Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Следствие: если плоскости заданы следами и одноименные следы плоскостей параллельны, то и плоскости параллельны.

(QHPH)(QVPV) (QWPW)QP

Из этого соотношения следует, что если хотя бы одна пара одноименных следов пересекается, то и плоскости пересекаются.

Из этих определений легко вывести способ построения параллельных плоскостей на чертеже.

Пример: Через точку А провести плоскость, параллельно заданной.

Рис.9 l2a2 l1a1 m2b2 m1b1

 

Рис.10 b2m2 b1m1 l2a2 l1a1

 

Рис.11 h2X h1QH QHPH

h1QH, так как QHPH (и вообще PQ по условию).

Для плоскостей общего положения (QHPH) (QVPV)(QWPW)

Условие параллельности QW и PW проверяется построением.

<== предыдущая лекция | следующая лекция ==>
Линии уровня | Пересечение плоскостей, заданных следами
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 414; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.