Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Каталитическая конверсия углеводородов с водяным паром




ХИМИЧЕСКИЕ ОСНОВЫ ПРОИЗВОДСТВА ВОДОРОДА

 

Водород – один из основных химических продуктов нефтепереработки и нефтехимии. Главными его потребителями являются производство аммиака, метанола, процессы гидроочистки нефтяных фракций от сернистых соединений, гидрокрекинга, гидрирования бензола, гидродеалкилирования.Водород используют также в качестве топлива для ракет и в некоторых других процессах. Мировое производство водорода в 1990г. составило ~ 43 млн т. Значение водорода в различных областях хозяйственной деятельности в настоящее время настолько велико, что прогресс в некоторых отраслях промышленности определяется в основном экономичностью его производства.

В основе промышленных методов получения водорода лежат реакции окисления углеводородов связанным или свободным кислородом. В промышленности используют следующие методы получения водорода: паровую каталитическую конверсию легких углеводородов с подводом тепла, автотермическую каталитическую конверсию легких углеводородов, высокотемпературную кислородную конверсию различных типов углеводородного сырья различных типов, кислородную или паро-кислородную газификацию твердого топлива, электролиз воды, извлечение водорода из газовых отходов процессов нефтепереработки.

Каталитическая конверсия углеводородов в настоящее время является основным промышленным способом получения водорода.

Кроме природных и попутных нефтяных газов в качестве исходного сырья для его производства используют также коксовый газ и газы переработки нефти.

При повышенных температурах углеводороды реагируют с водяным паром, диоксидом углерода, кислородом в соответствии с уравнениями:

 

 

 

 

Как правило, конверсия углеводородов протекает в области, в которой образование углерода термодинамически неблагоприятно. При температурах ниже 700 К и повышенных давлениях основными продуктами реакции являются СН4 и СО2. При высоких температурах (выше 1500 К) реакции протекают практически до образования Н2 и СО:

 

Каталитическую конверсию природного газа или сжиженных газов и бензиновых фракций с температурой кипения до 473 К водяным паром

 

осуществляют под давлением до 4,0 МПа при температуре газа на выходе 1033-1173 К в зависимости от требуемого состава газовой смеси. Смесь углеводородов и паров воды подается в реакционные трубы, находящиеся в топке печи и поглощающие от нее тепло. Процесс проводят на катализаторах Ni/Аl2О3.

Для получения газа требуемого состава, например для синтеза метанола, в сырье вводят диоксид углерода и осуществляют процесс пароуглекислотной конверсии. В этом случае протекает также реакция:

 

Проведение процесса конверсии метана смесью водяного пара и диоксида углерода позволяет широко варьировать отношение Н2:СО в синтез-газе.

Как и в случае реакций паровой конверсии углеводородов, реакция пароуглекислотной конверсии метана обратима; остальные углеводороды конвертируются полностью:

 

 

 

 

Для проведения процесса в автотермическом режиме осуществляют паро-кислородную и паро-кислородно-воздушную конверсию углеводородов. При этом протекают также следующие реакции:

Реакции эти практически необратимы, преобладание одной из них зависит от количества окислителя и параметров процесса. Реакции высоко экзотермичны и могут служить источником энергии для осуществления эндотермических реакций.

Реакции конверсии углеводородов относятся к гомолитическим, т.е. сопровождающимся разделением электронов в электронных парах молекул. Катализаторами конверсии углеводородов являются d -металлы, главным образом VIII Периодической системы химических элементов Д.И. Менделеева. Металлы по своей активности в реакции паровой конверсии метана располагаются в следующий ряд:

Fe < Co < Ni < Ru < Rh < Pt < Pd

Благородные металлы обладают высокой активностью, но дόроги, и все применяемые в промышленности в настоящее время катализаторы в качестве активного компонента содержат никель. Никелевые катализаторы паровой конверсии готовят обычно двумя способами: нанесением активного компонента на предварительно подготовленный носитель (его многократно пропитывают растворами солей никеля и промоторов) или соосаждением гидроксидов никеля, промоторов и порошкообразного носителя. Для предотвращения рекристаллизации кристаллов никеля на поверхности носителя в состав катализатора вводят промоторы, в качестве которых используют трудновосстановимые оксиды металлов. Эти оксиды проявляют структурирующее действие по отношению к никелю. Эффективность действия промоторов возрастает в ряду:

BaO << SrO << CaO < Cr2O3 < BeO < MgO < Al2O3.

В свежеприготовленном катализаторе никель находится в форме оксидов, алюминатов и других соединений. Перед началом работы катализатор восстанавливают водородом или оксидом углерода в соответствии со схемой:

 

 

В процессе паровой конверсии метана в большинстве случаев фактором, определяющим активность процесса, является подвод тепла через стенку реакционных труб к слою катализатора. Поэтому собственно активность катализатора, как правило, не является лимитирующим фактором.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2886; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.