Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 15. Виды юридической ответственности




Виды юридической ответственности

В зависимости от того к какой отрасли относится юр ответственность выделяются

  • Уголовная- применяется только за преступление. Никто не может быть признан виновным в совершении преступления, а также подвергнут уголовному наказанию иначе как по приговору суда и в соответствии с уголовным, уголовно-процессуальным, уголовно-исполнительным законодательством. Меры уголовной ответственности это наиболее жесткие формы гос принуждения, направленные приемущественно на личность виновного,- лишение свободы и т.д.
  • Административная- наступает за совершение административного проступка на основе законодательства об административных правонарушениях и выражается в таких мерах как штраф, лишение специального права и т.д.
  • Гражданская- наступает за нарушение договорных обязательств имущественного характера или за причинения имущественного внедоговорного вреда. Полное возмещение вреда- это основной принцип гражданско-правовой ответственности; возмещение убытков в некоторых случаях дополняется штрафными санкциями, например, выплатой неустойки.
  • Дисциплинарная- применяется за нарушение трудовой, учебной, служебной и воинской дисциплины; возлагается администацией предприятия, учреждения, организацией; в отношении же отдельных категорий- дисциплинарными коллегиями. Меры дисциплинарной ответственности- выговор, строгий выговор, увольнение.
  • Материальная ответственность- наступает за ущерб, причиненный предприятию, учреждению, организации рабочими и служащими при исполнении ими своих трудовых обязанностей. Различают ответственность возлагаемую органами гос власти, гос управления, судами и другими юрисдикционными структурами.

 

Тема: Ряды Фурье ля 2 периодической функции. Теорема Дирихле. Разложение 2 е периодической функции в ряд Фурье.

15.1 Ряды Фурье для 2 периодической функции. Пусть на [a,b] задана система функций

Определение 1. Система функций называется ортогональной на [a,b], если,.

Предварительно докажем, что тригонометрическая система 1, Cosx, Sinx, Cos2x, Sin2x,…Cosnx, Sinnx,… ортогональна на отрезке [ ].

1) =0, n = 1,2,…

2) =0, n = 1,2,…

3) =0, n

4) =0

5) =0, n

Вычислим еще следующие интегралы:

= = n = 1,2,…

=.

Пусть дан тригонометрический ряд:

который сходится к S(x) должна быть 2 – периодической.

Будем предполагать, что равенство (1), умноженное на cosnx или sinnx, можно почленно интегрировать.

В результате получим:

, в силу ортогональности тригонометрической системы.

;,, n=1,2,…

,,, n=1,2,…

Таким образом, зная сумму тригонометрического ряда, можно найти коэффициенты тригонометрического ряда.

Пусть дана 2 периодическая функция f(x) для которой существуют интегралы:

,,, n=1,2,…

Функции f(x) можно поставить в соответствие тригонометрический ряд:

f (x)

(2)

Ряд (2) называется рядом Фурье функции f(x),

, n=1,2,…,, n=1,2,…

называются коэффициентами ряда Фурье. Предварительно дадим два определения.

Определение 2. Функция f(x) называется кусочно - непрерывной на отрезке, если данный отрезок можно разбить на конечное число интервалов, на каждом из которых функция является непрерывной.

Определение 3. Функция f(x) называется кусочно - монотонной на отрезке, если отрезок можно разбить на конечное число интервалов, на каждом из которых функция не убывает либо не возрастает.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 640; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.