Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод аналитической группировки




Единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставляются с изменениями факторного признака для выявления характера связи между ними. Сначала выбираются два признака: факторный и результативный. По факторному признаку производится группировка, а по результативному – подсчет средних или относительных величин. Пример: Количество вкладчиков и средний остаток вклада по трем филиалам Сбербанка (тыс. руб.)*.

Число вкладчиков, человек Средний остаток по вкладу, тыс. руб.
13 500 1,50
1 290 1,81
2 205 2,05

 

 

-2-

 

Дисперсионный анализ дает нам, прежде всего, возможность определить значение систематической и случайной вариаций в общей вариации, а также установить роль интересующего нас фактора в изменении результативного признака.
Анализ проходит четыре итерации.

1. Определяем, какой признак факторный, какой – результативный.

2. Производим группировку по факторному признаку.

3. Считаем среднее значение факторного и результативного признака в группах.

4. Выясняем взаимосвязь между этими средними.

Для оценки тесноты связи по результатам факторной группировки используется межгрупповая дисперсия. Межгрупповая дисперсия характеризует колеблемость групповых средних вокруг общей средней, которая возникает под действием факторов, положенных в основу группировки. Если при этом групповая средняя равна средней общей, значит, фактор, положенный в основу группировки, на результативный признак не влияет.

Для характеристики тесноты корреляционной связи между признаками в аналитических группировках межгрупповую дисперсию сопоставляют с общей. Это сопоставление называется коэффициентом детерминации. Он показывает, какая часть общей дисперсии связана с факторами, положенными в основу группировки.

Подобные операции выполняют и с корреляционным отношением. Оно характеризует долю вариации результативного признака, вызванной действием факторного признака, положенного в основание группировки. Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем большее влияние оказывает факторный признак на результат.

 

-3-

Дисперсионный анализ позволяет не только определить роль случайной и систематической вариаций в общей вариации, но и оценить достоверность вариации, обнаруженной методом аналитических группировок. Определение достоверности вариации дает возможность с заданной степенью вероятности установить, вызвана ли межгрупповая вариация признаком, положенным в основание группировки, или она является результатом действия случайных причин.

Этапы корреляционного анализа:

1) предварительный анализ объекта исследования;

2) сбор и первичная обработка информации;

3) построение уравнения регрессии и определение его параметров;

4) проверка адекватности полученной модели.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 982; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.