КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение острой токсичности
Острая токсичность экополлютантов определяется экспериментально на нескольких видах, являющихся представителями различных уровней трофической организации в экосистеме (водоросли, растения, беспозвоночные, рыбы, птицы, млекопитающие). Агентства по защите окружающей среды требуют при определении критериев качества воды, содержащей некий токсикант, определения его токсичности, по крайней мере, на 8 различных видах пресноводных и морских организмов (16 тестов). Неоднократно делались попытки ранжировать виды живых существ по их чувствительности к ксенобиотикам. Однако для различных токсикантов соотношение чувствительности к ним живых существ различно. Более того, использование в экотоксикологии «стандартных видов» представителей определенных уровней экологической организации для определения экотоксичности ксенобиотиков с научной точки зрения некорректно, поскольку чувствительность животных, даже близких видов, порой отличается очень существенно. Зависимость доза-эффект (эпидемиологический подход). Спектры проявлений токсического процесса определяются строением токсиканта. Однако выраженность развивающегося эффекта является функцией количества действующего агента. В качестве вредного агента могут рассматриваться токсичные вещества, биологические субстанции, проникающая радиация и другие повреждающие факторы. В качестве эффектов могут учитываться самые разнообразные признаки. Например, летальный исход, выход показателя за пределы биологической нормы и т.п. Для обозначения количества вещества, действующего на биологический объект, используют понятие – доза (воздействующая доза). Вид повреждающего агента и путь поступления воздействующей дозы могут быть самыми разнообразными. Воздействующую дозу можно непосредственно измерить при помощи технических средств и выразить в соответствующих единицах (мг/кг, мг/м3, грей, кл/кг и т.д.). Например, введение в желудок крысе весом 250 г и кролику весом 2000 г токсиканта в количестве 500 мг означает, что животным введены дозы, равные соответственно 2 и 0,25 мг/кг. Воздействующая доза имеет нормальное распределение и характеризуется средним значением и дисперсией, обусловленной погрешностью ее измерения. Зависимость «доза-эффект» может быть прослежена на всех уровнях организации живой материи: от молекулярного до популяционного. При этом в подавляющем большинстве случаев будет регистрироваться общая закономерность: с увеличением дозы – увеличивается степень повреждения системы; в процесс вовлекается все большее число составляющих её элементов. В зависимости от действующей дозы практически всякое вещество в определенных условиях может оказаться вредным для организма. Наиболее распространенный способ определения зависимости «доза-эффект» в группе состоит в формировании в этой группе подгрупп. Животным, входящим в подгруппу, токсикант вводят в одинаковой дозе, а в каждой последующей подгруппе доза увеличивается. Формирование подгрупп должно осуществляться методом случайных выборок. С увеличением дозы будет увеличиваться часть животных в каждой из подгрупп, у которых развился оцениваемый эффект. Получаемую при этом зависимость можно представить в виде кумулятивной кривой частот распределения, где количество животных с положительной реакцией на токсикант (часть общего количества животных в подгруппе) является функцией дозы (рис.). Рис. Типичная кривая доза-эффект для группы животных, В большинстве случаев график представляет собой S-образную кривую log-нормального распределения, симметричную относительно средней точки. Можно выделить ряд важных характеристик этой кривой, которые целесообразно учитывать при интерпретации получаемых результатов. Зависимость «доза-эффект» по показателю летальность. Поскольку смертельный исход после действия токсиканта – альтернативная реакция, реализующаяся по принципу «все или ничего», этот эффект считают наиболее удобным для определения токсичности веществ, его используют для определения величины среднесмертельной дозы (ЛД5 0 (LD50)). Средняя смертельная доза (или концентрация LC50) – количество яда, вызывающее гибель 50% стандартной группы подопытных животных при определенном сроке последующего наблюдения. Введение токсиканта осуществляется одним из возможных способов при контролируемых условиях. При этом необходимо учитывать, что способ введения вещества самым существенным образом сказывается на величине токсичности (табл.). Таблица Влияние способа введения на токсичность зарина и атропина
Используются животные одного пола, возраста, веса, содержащиеся на определенной диете, при необходимых условиях размещения, температуре, влажности и т.д. Исследования повторяют на нескольких видах лабораторных животных. После введения тестируемого химического соединения проводят наблюдения, определяя количество павших животных, как правило, за 14 суток.
Дата добавления: 2014-01-20; Просмотров: 861; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |