Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дискретизация и квантование

Кодирование звуковой информации. Аналоговая и цифровая информация.

Физически звук представляет собой волновые колебания давления в той или иной среде.

Громкость сигнала зависит от его амплитуды (чем больше амплитуда, тем громче сигнал). Тон сигнала зависит от его частоты (чем больше частота сигнала, тем выше тон). Частота звуковой волны выражается чис­лом колебаний в секунду и измеряется в герцах (Гц, Hz). Чело­веческое ухо способно воспринимать звуки в диапазоне от 20 Гц до 20 кГц. Этот диапазон частот называют звуковым.

Каковы бы ни были физические характеристики колебаний, в данном случае важно то, что звук представляет собой нечто неделимое на части (непрерывное), пробегающее в пространстве и времени. Чтобы записать звук на какой-нибудь носитель можно соотнести его уровень (силу) с какой-нибудь измеряемой характеристикой этого носителя. Так, например, степень намагниченности магнитной ленты в различных ее местах зависит от особенностей звука, который на нее записывался. Намагниченность может непрерывно изменяться на протяжении ленты, подобно тому, как параметры звука могут меняться в воздухе. Т.е. магнитная лента прекрасно справляется с задачей хранения звука. И хранит его в так называемой аналоговой форме, когда значения изменяются непрерывно (плавно), что близко к естественному звуку.

Но как хранить звук на компьютере. Здесь любая информация представлена в цифровой форме. Данные должны быть представлены числами, а, следовательно, информация в компьютере дискретна (разделена). Для того, чтобы записать звук на цифровой носитель информации (например, жесткий диск), его подвергают так называемой оцифровке, механизм которой заключается в измерении параметров звука через определенные очень малые промежутки времени.

При преобразовании звуковой информации в цифровую форму ее подвергают дискретизации и квантованию. Дискретизация заключается в замерах величины аналогового сигнала огромное множество раз в секунду. Полученной величине аналогового сигнала сопоставляется определенное значение из заранее выделенного диапазона: 256 (8 бит) или 65536 (16 бит). Привидение в соответствие уровня сигнала определенной величине диапазона и есть квантование.

Понятно, что как бы часто мы не проводили измерения, все равно часть информации будет теряться. Однако и понятно, что чем чаще мы проводим замеры, тем точнее будет соответствовать цифровой звук своему аналоговому оригиналу.

Также, чем больше бит отведено под кодирование уровня сигнала (квантование), тем точнее соответствие.

С другой стороны, звук хорошего качества будет содержать больше данных и, следовательно, больше занимать места на цифровом носителе информации.

В качестве примера можно привести такие расчеты. Для записи качественной музыки аналоговый звуковой сигнал измеряют более 44 000 раз в секунду и квантуют 2 байтами (16 бит дает диапазон из 65536 значений). Т.е. за одну секунду записывается 88 000 байт информации. Это равно (88 000 / 1024) примерно 86 Кбайт. Минута обойдется уже в 5168 Кбайт (86*60), что немного больше 5 Мб.

 

 

Таким образом, рассмотрев принципы хранения в ЭВМ различных видов информации, можно сделать важный вывод о том, что все они так или иначе преобразуются в числовую форму и кодируются набором нулей и единиц. Благодаря такой универсальности представления данных, если из памяти наудачу извлечь содержимое какой-нибудь ячейки, то принципиально невозможно определить, какая именно информация там закодирована: текст, число или картинка.

 

Элементы алгебры высказываний. Объекты и операции алгебры высказываний. Работа компьютера основана на алгебраической системе логики, разработанной в XIX в. Дж. Булем.

Высказывание это любое предложение, в отношении которого имеет смысл утверждение об его истинности или ложности. При этом считается, что высказывание или истинно, или ложно и не может быть одновременно и истинным, и ложным.

В алгебре логики все высказывания обозначаются буквами а, b, с и т. д., что позволяет манипулировать ими подобно тому, как в математике манипулируют обычными числами.

Над высказываниями могут выполняться следующие логические операции:

операция ИЛИ — логическое сложение (дизъюнкцию),

операция И — логическое умножение (конъюнкцию),

операция НЕ — отрицание (инвертор).

Результаты этих операций определяются по правилам, указанным в следующей таблице:

а b а ИЛИ b а И b НЕ а
Истинно Истинно Ложно Ложно Истинно Ложно Истинно Ложно Истинно Истинно Истинно Ложно Истинно Ложно Ложно Ложно Ложно Ложно Истинно Истинно

Используя логические операции, можно получить более сложные высказывания. Например, если мы обозначим высказывания 5<3, х=1, 7=7 соответственно буквами а, b, и с, то высказывание "а И b И с" будет ложным, независимо от значения х. А высказывание "а ИЛИ b ИЛИ с" — истинно при любом значении х.

Хотя система Буля допускает множество других операций, указанных трех уже достаточно для того, чтобы производить сложение, вычитание, умножение и деление или выполнять такие операции, как сравнение символов и чисел.

Логические действия двоичны по своей сути. Они оперируют лишь с двумя сущностями: "истина" или "ложь", "да" или "нет", "открыт" или "закрыт", нуль или единица, называемыми логическими значениями.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической функцией, т.е.

1. Всякая логическая переменная и символы "истина" ("1") и "ложь" ("0") — формулы.

2. Если А и В — формулы, то , А . В, А v В, А B, А В — формулы.

Никаких других формул в алгебре логики нет.

 

Как показывает анализ формул, при определённых сочетаниях значений переменных A, B и C она принимает значение "истина", а при некоторых других сочетаниях — значение "ложь". Такие формулы называются выполнимыми.

Некоторые формулы принимают значение "истина" при любых значениях истинности входящих в них переменных. Таковой будет, например, формула А v . Такие формулы называются тождественно истинными формулами или тавтологиями. Высказывания, которые формализуются тавтологиями, называются логически истинными высказываниями.

Если две формулы А и В одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными.

Равносильность двух формул алгебры логики обозначается символом "=" или символом "" Замена формулы другой, ей равносильной, называется равносильным преобразованием данной формулы.

В алгебре логики выполняются следующие основные законы, позволяющие производить тождественные преобразования логических выражений:

Закон Для ИЛИ Для И
Переместительный
Сочетательный
Распределительный
Правила де Моргана
Идемпотенции
Поглощения
Склеивания
Операция переменной с ее инверсией
Операция с константами
Двойного отрицания

Использование алгебры высказываний в информатике. В каждом современном компьютере используется логическая система, основой которой являются два логических значения: 1 — истина, 0 — ложь. Был найден технический способ реализации логических операций посредством использования так называемых логических вентилей, которые строятся главным образом из транзисторов — переключательных устройств, способных либо проводить электрический ток (истина), либо препятствовать его прохождению (ложь). На вход каждого вентиля поступают электрические сигналы высокого и низкого уровней напряжения, которые он интерпретирует, в зависимости от своей функции, как «1» или «0», и выдает один выходной сигнал также либо высокого, либо низкого напряжения.

Логический элемент компьютера — это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию. Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И—НЕ, ИЛИ—НЕ и другие (называемые также вентилями), а также триггер.

 

В вентиле НЕ транзисторы соединены таким образом, что реализуется операция инвертирования: принимая сигнал низкого уровня, вентиль вырабатывает сигнал высокого уровня и наоборот. На приведенном ниже рисунке схематически изображены выходные состояния вентиля ИЛИ при различных значениях сигналов, подающихся ему на вход.

Рис. Состояния вентиля ИЛИ

Все остальные логические схемы компьютера, предназначенные для выполнения различных операций (в том числе арифметических) над информацией, могут быть построены путем соединения в различные комбинации вентилей трех типов: И, ИЛИ, НЕ. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

<== предыдущая лекция | следующая лекция ==>
 | Полусумматор
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1178; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.