Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формализация понятия алгоритмов




ПОНЯТИЕ ГРАММАТИКИ. ФОРМАЛЬНОЕ ОПРЕДЕЛЕНИЕ ГРАММАТИКИ. ФОРМА БЭКУСА-НАУРА.

Грамматика, как наука, есть раздел языкознания, изучающий грамматический строй языка, закономерности построения правильных осмысленных речевых отрезков на этом языке

Формальная грамматика или просто грамматика в теории формальных языков — способ описания формального языка, то есть выделения некоторого подмножества из множества всех слов некоторого конечного алфавита. Различают порождающие и распознающие (или аналитические) грамматики — первые задают правила, с помощью которых можно построить любое слово языка, а вторые позволяют по данному слову определить, входит оно в язык или нет.

Форма Бэкуса—Наура (сокр. БНФ, Бэкуса—Наура форма) — формальная система описания синтаксиса, в которой одни синтаксические категории последовательно определяются через другие категории. Используется для описания синтаксиса языков программирования, данных, протоколов и т. д.

Определение алгоритма нельзя считать представленным в привычном математическом смысле. Есть необходимость формализовать понятие алгоритма, т.е. отвлечься от существа решаемой данным алгоритмом задачи, и выделить свойства различных алгоритмов, привлекая к рассмотрению только его форму записи. Задача нахождения единообразной формы записи алгоритмов, решающих различные задачи, является одной из основных задач теории алгоритмов. В теории алгоритмов предполагается, что каждый шаг алгоритма таков, что его может выполнить достаточно простое устройство (машина), Желательно, чтобы это устройство было универсальным, т.е. чтобы на нем можно было выполнять любой алгоритм. Механизм работы машины должен быть максимально простым по логической структуре, но настолько точным, чтобы эта структура могла служить предметом математического исследования.

Впервые это было сделано американским математиком Эмилем Постом в 1936 (машина Поста) еще до создания современных вычислительных машин и (практически одновременно) английским математиком Аланом Тьюрингом (машина Тьюринга).

Машина Поста – это абстрактная (несуществующая реально) вычислительная машина, созданная для уточнения (формализации) понятия алгоритма. Представляет собой универсальный исполнитель, позволяющий вводить начальные данные и читать результат выполнения программы.
В 1936 г. американский математик Эмиль Пост в статье описал систему, обладающую алгоритмической простотой и способную определять, является ли та или иная задача алгоритмически разрешимой. Если задача имеет алгоритмическое решение, то она представима в форме команд для машины Поста.

Машина Поста состоит из …

1. бесконечной ленты, поделенной на одинаковые ячейки (секции). Ячейка может быть пустой (0 или пустота) или содержать метку (1 или любой другой знак),

2. головки (каретки), способной передвигаться по ленте на одну ячейку в ту или иную сторону, а также способной проверять наличие метки, стирать и записывать метку.

Текущее состояние машины Поста описывается состоянием ленты и положением каретки. Состояние ленты – информация о том, какие секции пусты, а какие отмечены. Шаг – это движение каретки на одну ячейку влево или вправо. Состояние ленты может изменяться в процессе выполнения программы.

Кареткой управляет программа, состоящая из строк команд. Каждая команда имеет следующий синтаксис: i K j,

где i - номер команды, K – действие каретки, j - номер следующей команды (отсылка).

Всего для машины Поста существует шесть типов команд:

· V j - поставить метку, перейти к j-й строке программы.

· X j - стереть метку, перейти к j-й строке программы.

· <- j - сдвинуться влево, перейти к j-й строке программы.

· -> j - сдвинуться вправо, перейти к j-й строке программы.

·? j1; j2 - если в ячейке нет метки, то перейти к j1-й строке программы, иначе перейти к j2-й строке программы.

·! – конец программы (стоп).

У команды «стоп» отсылки нет.

Варианты окончания выполнения программы на машине Поста:

1. Команда "стоп" - корректная остановка. Возникает в результате выполнения правильно написанного алгоритма.

2. Выполнение недопустимой команды – нерезультативная остановка. Случаи, когда головка должна записать метку там, где она уже есть, или стереть метку там, где ее нет, являются аварийными (недопустимыми).

3. Уход в бесконечность, зацикливание. Машина Поста в результате работы алгоритма может вообще не остановиться (никогда не дойти до команды «стоп» и никогда не завершиться аварийной ситуацией).

Элементарные действия (команды) машина Поста проще команд машины Тьюринга. Поэтому программы для машины Поста имеют большее число команд, чем аналогичные программы для машины Тьюринга.

Почему достаточно лишь два различных символа (есть метка, нет метки)? Дело в том, что любой алфавит может быть закодирован двумя знаками; в зависимости от алфавита возрастать может только количество двоичных символов в букве алфавита.

Пример работы машины Поста:

увеличить число 3 на единицу (изменить значение в памяти с 3 на 4).
Целое положительное число на ленте машины Поста представимо идущими подряд метками, которых на одну больше, чем кодируемое число. Это связано с тем, что одна метка обозначает ноль, а уже две – единицу, и т.д.
Допустим, точно известно, что каретка стоит где-то слева от меток и обозревает пустую ячейку. Тогда программа увеличения числа на единицу может выглядеть так:
1 -> 2
2? 1;3
3 <- 4
4 V 5
5!
А процесс выполнения может быть таким:




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 963; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.144 сек.