Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Услуги мультимедиа




Услуги VPN

Информационно-справочные услуги

К информационно-справочным относятся услуги предоставления информации со стороны элементов фрагмента ССП. В отличие от услуги доступа к информационно-справочным ресурсам, в данном случае предоставление предполагает включение сервера услуги в состав фрагмента ССП и использование API-интерфейсов между Softswitch и сервером приложений.

Фрагментом ССП может поддерживаться предоставление следующих видов услуг виртуальных частных сетей:

  • виртуальная частная сеть (VPN) на основе коммутируемых соединений с поддержкой адресного пространства VPN со стороны Softswitch. В этом случае задачей Softswitch является анализ номера входящего/исходящего абонента с принятием решения о возможности установления соединения в соответствии с политикой VPN. После принятия положительного решения об установлении соединения обрабатывается во фрагменте ССП как обычный вызов;
  • виртуальная частная сеть на основе постоянных соединений внутри фрагмента NGN с обработкой адресной информации со стороны гибкого коммутатора. В этом случае для виртуальной частной сети изначально резервируется транспортный ресурс во фрагменте NGN. Обслуживание вызовов VPN осуществляется гибким коммутатором в рамках выделенного для VPN транспортного ресурса;
  • виртуальная частная сеть на основе постоянных соединений без обработки сигнальной информации вызова гибким коммутатором. В этом случае VPN использует фрагмент NGN только как транспортный ресурс. Обработкой сигнальной информации, относящейся к вызову, занимаются внешние к фрагменту устройства.

Мультимедийные услуги можно рассматривать с двух позиций:

  • с позиции абонентов услуг связи;
  • с позиции поставщика услуг (оператора связи).

С точки зрения абонентов, мультимедийная услуга связи представляет собой возможность сети обеспечить функционирование специфических мультимедийных пользовательских приложений. Фактически абоненту безразлично, на базе какой сети предоставляется мультимедийная услуга, т. е. услуга не зависит от технологической платформы сети.

Мультимедийное пользовательское приложение представляет собой приложение, одновременно поддерживающее несколько "единиц " представления аудиовизуальной информации и предоставляющее абонентам общее информационное пространство в рамках одного сеанса связи. В качестве примеров мультимедийных приложений можно привести следующие: совместная работа с документами и графикой, "белая доска ", дистанционное обучение, телемедицина и др.

Оператор связи рассматривает мультимедийную услугу связи как перенос комбинации двух или более "единиц " представления аудиовизуальной информации (т. е. видео, звука, текста) между абонентами (группами абонентов) в рамках сетевой инфраструктуры и с учетом состава и возможностей используемого оборудования. Таким образом, возможность предоставления той или иной мультимедийной услуги полностью зависит от технологической платформы сети.

Европейский институт стандартизации в области связи (ETSI) ввел понятие "широкополосных мультимедийных услуг ". Под такими услугами понимаются услуги связи, предоставление которых осуществляется на базе широкополосных сетей связи, способных обеспечить перенос информации (контента) в виде непрерывных потоков пакетов/ячеек в режиме реального времени.

Классификацию мультимедийных услуг связи и предложений можно производить с различных точек зрения и с использованием различных критериев.

В качестве примера классификации, отражающей точку зрения оператора сети B-ISDN, можно привести рекомендацию ITU-T I.211. Суть подхода заключается в том, что услуги связи предоставляются абонентам с помощью определенных служб B-ISDN. Согласно рекомендации, в зависимости от способов связи между терминальным оборудованием абонентов и в соответствии с возможными пользовательскими приложениями все службы делятся на интерактивные и распределительные, каждая из которых, в свою очередь, включает несколько классов служб.

2. Лекция: Архитектура ССП

 

С развитием инфокоммуникационных услуг стали весьма популярны обсуждения различных вариантов архитектуры ССП, которые в рамках единой инфраструктуры объединяют сети ТфОП, мобильную связь, ресурсы сети Интернет, телефонию по IP-протоколу. В настоящее время наибольшее распространение получила четырехуровневая архитектура ССП:


Рис. 2.1. Архитектура сети следующего поколения

  • уровень управления услугами;
  • уровень управления коммутацией;
  • транспортный уровень;
  • уровень доступа.

Уровень управления услугами содержит функции управления логикой услуг и приложений и представляет собой распределенную вычислительную среду, обеспечивающую:

  • предоставление инфокоммуникационных услуг;
  • управление услугами;
  • создание и внедрение новых услуг;
  • взаимодействие различных услуг.

Данный уровень позволяет реализовать специфику услуг и применять одну и ту же программу логики услуг вне зависимости от типа транспортной сети и способа доступа. Наличие этого уровня позволяет также вводить на сети электросвязи любые новые услуги без вмешательства в функционирование других уровней.

Уровень управления может включать множество независимых подсистем ("сетей услуг "), базирующихся на различных технологиях, имеющих своих абонентов и использующих свои, внутренние системы адресации.

Операторам связи требуются механизмы, позволяющие быстро и гибко развертывать, а также изменять услуги в зависимости от индивидуальных потребностей пользователей.

Такие механизмы предусмотрены открытой сервисной архитектурой OSA (Open Services Access) – основной концепцией будущего развития сетей электросвязи в части внедрения и оказания новых дополнительных услуг.

При создании систем на основе OSA должны присутствовать следующие ключевые моменты:

  • открытая среда для создания услуг;
  • открытая платформа управления услугами.

На протяжении нескольких лет различными организациями предлагалось несколько вариантов реализации концепции OSA, пока в 1998 г. не был сформирован консорциум Parlay Group, который занимается созданием спецификаций открытого API (Application Programming Interface), позволяющего управлять сетевыми ресурсами и получать доступ к сетевой информации.

Архитектура Parlay является одной из практических реализаций концепции OSA (рис. 2.2).

Как показано на рисунке, разные сети связи имеют различные сетевые элементы, в частности:

  • в сети подвижной электросвязи второго поколения входят SGSN (Serving GPRS Support Node) и MSC (Mobile Switching Center);
  • в телефонную сеть общего пользования входит SSP (Service Switching Point) коммутатор услуг в ТфОП;
  • в сети подвижной электросвязи третьего поколения входит S-CSCF (Serving Call Session Control Function);
  • ведомственные АТС.

Каждый из этих элементов выходит на шлюз (Gateway) по своему протоколу, а задача шлюза по концепции OSA/Parlay состоит в том, чтобы свести все протоколы к единым интерфейсам API. Тогда приложения можно писать без учета особенностей нижележащих сетей, и следует только строго придерживаться интерфейсов API.


Рис. 2.2. Архитектура Parlay

Оказалось, что концепция Parlay является слишком сложной для массового привлечения сторонних программистов. Выяснилось, что для оказания 80% услуг требуется лишь 20% возможностей Parlay-шлюза. Следовательно, для подавляющего большинства программистов требование освоить весь набор Parlay-интерфейсов является чрезмерно завышенным. По мере уменьшения разнообразия возможностей сети растет число разработчиков приложений, что весьма важно для освоения прибыльного рынка приложений.

Эти рассуждения иллюстрирует рис. 2.3, где показаны слева четыре набора функций сети:


Рис. 2.3. Зависимость возможностей сети от количества разработчиков приложений

  1. Наибольшие возможности дает использование протоколов (INAP, CAMEL, SIP и др.), как это делается до сих пор, но при этом сообщество разработчиков является минимальным.
  2. Значительное упрощение дают открытые интерфейсы API: JAIN, Parlay, OSA, а также собственные интерфейсы (Proprietary APIs).
  3. Еще больше программистов разрабатывают web-услуги, используя простые языки скриптов: XML, VXML, CPML, WDSL.
  4. Замысел Parlay X состоит в еще большем упрощении программирования web-услуг.

Приложения могут быть написаны на языках C++, Java, Visual Basic, PHP и др. Для разработки приложений Parlay Х основным языком программирования является язык XML. В качестве транспортных средств чаще всего используются:

  • CORBA – универсальный объектно-ориентированный протокол взаимодействия распределенных систем;
  • SOAP – упрощенный протокол общения распределенных объектов, основан на языке XML, используется в сочетании с протоколом HTTP.

Самой перспективной на сегодняшний день объектной технологией является SOAP/XML, так как она наиболее универсальна, основывается на международных стандартах и имеет обширную поддержку со стороны различных производителей программного обеспечения. Эта технология чаще всего используется для создания web-сервисов и для обеспечения их взаимодействия с клиентским процессом.

Задача уровня управления коммутацией — обработка информации сигнализации, маршрутизация вызовов и управление потоками. Данный уровень поддерживает логику управления, которая необходима для обработки и маршрутизации трафика.

Функция установления соединения реализуется на уровне элементов базовой сети под внешним управлением оборудования программного коммутатора (Softswitch). Исключением являются АТС с функциями контроллера шлюзов (MGC – Media Gateway Controller), которые сами выполняют коммутацию на уровне элемента транспортной сети.

В случае использования на сети нескольких Softswitch они взаимодействуют посредством соответствующих протоколов (как правило, семейство SIP-T) и обеспечивают совместное управление установлением соединения.

Softswitch должен осуществлять:

  • обработку всех видов сигнализации, используемых в его домене;
  • хранение и управление абонентскими данными пользователей, подключаемых к его домену непосредственно или через оборудование шлюзов доступа;
  • взаимодействие с серверами приложений для оказания расширенного списка услуг пользователям сети.

Более подробно Softswitch будет рассмотрен в следующих лекциях.

Задача транспортного уровня — коммутация и прозрачная передача информации пользователя.

В ССП операторы получат возможность наращивать объемы услуг, что в свою очередь приведет к росту требований к производительности и емкости сетей транспортного уровня. Основными требованиями к таким сетям являются:

  • высокая надежность оборудования узлов;
  • поддержка функций управления трафиком;
  • хорошая масштабируемость.

Надежность выходит на первое место, так как ССП должны обеспечивать передачу разнородного трафика, в том числе чувствительного к задержкам, который ранее передавался с помощью классических систем передачи с временным разделением каналов иерархий SDH или PDH.

В ряде случаев создаваемые транспортные сети будут заменять собой часть инфраструктуры существующих традиционных сетей передачи. Конечно, они должны соответствовать требованиям технических нормативных правовых актов, предъявляемым к заменяемой сети.

МСЭ-Т определяет следующие требования к возможностям транспортного уровня:

  • поддержка соединений в реальном времени и соединений, нечувствительных к задержкам;
  • поддержка различных моделей соединений: "точка-точка ", "точка-многоточие ", "многоточие-многоточие ", "многоточие-точка ";
  • гарантированные уровни производительности, надежности, доступности, масштабируемости.

Транспортный уровень ССП рассматривается как уровень, составными частями которого являются сеть доступа и базовая сеть.

Под сетью доступа понимается системно-сетевая инфраструктура, которая состоит из абонентских линий, узлов доступа и систем передачи, обеспечивающих подключение пользователей к точке агрегации трафика (к сети ССП или к традиционным сетям электросвязи).

Для организации уровня доступа могут использоваться различные среды передачи. Это может быть медная пара, коаксиальный кабель, волоконно-оптический кабель, радиоканал, спутниковые каналы либо любая их комбинация.

Особенностью инфраструктуры ССП является использование универсальной базовой сети, базирующейся на технологиях пакетной коммутации.

Базовая сеть – это универсальная сеть, реализующая функции транспортировки и коммутации. В соответствии с данными функциями базовая сеть представляется в виде трех уровней (рис. 2.4):

  • технология коммутации пакетов;
  • технологии формирования тракта;
  • среда передачи сигналов.

Нижний уровень модели – среда передачи сигналов. Этот уровень должен быть реализован на кабелях с оптическими волокнами (ОВ) или на цифровых радиорелейных линиях (РРЛ).

Сегодня при выборе технологической основы перспективной считается IP, ввиду того, что:

  • использование технологии IP/MPLS в среде Ethernet позволяет повысить масштабируемость и качество обслуживания до уровня, необходимого для транспортных сетей, а спецификации MPLS RSVP-TE Fast Reroute обеспечивает восстанавливаемость трактов в пределах 50 мс. Это означает, что сети Ethernet приобретают характеристики и надежность SDH или ATM;
  • количество приложений, использующих протокол IP, будет возрастать, соответственно доля трафика IP будет увеличиваться, и, как следствие, неизбежны проблемы технологии АТМ, связанные с дополнительными накладными расходами полосы пропускания при передаче IP-трафика, вследствие чего происходит увеличение стоимости реализации сетевых решений на базе АТМ.

В состав базовой сети ССП могут входить:

  • транзитные узлы, выполняющие функции переноса и коммутации;
  • оконечные (граничные) узлы, обеспечивающие доступ абонентов к мультисервисной сети;
  • контроллеры сигнализации, выполняющие функции обработки информации сигнализации, управления вызовами и соединениями;
  • шлюзы, позволяющие осуществить подключение традиционных сетей электросвязи (ТфОП, СПД, СПС).


Рис. 2.4. Модель базовой сети

Контроллеры сигнализации могут быть вынесены в отдельные устройства, предназначенные для обслуживания нескольких узлов коммутации. Использование общих контроллеров позволяет рассматривать их как единую систему коммутации, распределенную по сети. Такое решение не только упрощает алгоритмы установления соединений, но и является наиболее экономичным для операторов электросвязи, так как позволяет заменить дорогостоящие системы коммутации большой емкости небольшими, гибкими и доступными по стоимости даже мелким операторам электросвязи.

Доступ к ресурсам базовой сети осуществляется через граничные узлы, к которым подключается оборудование сети доступа или осуществляется связь с существующими сетями. В последнем случае граничный узел выполняет функции межсетевого шлюза.

К уровню доступа относятся:

  • шлюзы;
  • сеть доступа (сеть электросвязи, обеспечивающая подключение оконечных терминальных устройств пользователя к оконечному узлу транспортной сети);
  • оконечное абонентское оборудование.

К технологиям построения сетей доступа относятся:

  • беспроводные технологии (Wi-Fi, WiMAX);
  • технологии на основе систем кабельного телевидения (DOCSIS, DVB);
  • технологии xDSL;
  • оптоволоконные технологии (пассивные оптические сети (PON)).

Можно отметить, что с развитием технологий электросвязи становится все проблематичней провести четкую грань между транспортным уровнем и уровнем доступа. Так, например, цифровой абонентский мультиплексор доступа (DSLAM) может быть отнесен и к тому, и к другому уровню.

Архитектура сети электросвязи, построенной в соответствии с концепцией ССП, представлена на рис. 2.5 (с некоторыми упрощениями).

Рис. 2.5.

Инфокоммуникационные услуги предполагают взаимодействие поставщиков услуг и операторов связи, которое может обеспечиваться на основе функциональной модели распределенных (региональных) баз данных, реализуемых в соответствии с Рекомендацией МСЭ-Т X.500. Доступ к базам данных организуется с использованием протокола LDAP (Lightweight Directory Access Protocol).

Вышеуказанные базы данных позволяют решить следующие задачи:

  • создание абонентских справочников;
  • автоматизация взаиморасчетов между операторами связи и поставщиками услуг;
  • обеспечение взаимодействия между операторами связи в процессе предоставления услуг интеллектуальной связи;
  • обеспечение взаимодействия терминалов с различными функциональными возможностями на разных концах соединения.

Вышеуказанные базы данных могут использоваться также поставщиками услуг для организации платных информационно-справочных услуг.

Концепция ССП во многом опирается на технические решения, уже разработанные международными организациями стандартизации. Так, взаимодействие серверов в процессе предоставления услуг предполагается осуществлять на базе протоколов, специфицированных IETF (MEGACO), ETSI (TIPHON), Форумом 3GPP2 и т.д. Для управления услугами будут использованы протоколы H.323, SIP и подходы, применяемые в интеллектуальных сетях связи.

В качестве технологической основы построения транспортного уровня сетей связи следующего поколения рассматривается технология IP/MPLS с возможным применением в будущем оптической коммутации.

3. Лекция: Основные протоколы, используемые в сетях следующего поколения

В первую очередь Softswitch управляет обслуживанием вызовов, т.е. установлением и разрушением соединений. Также Softswitch осуществляет координацию обмена сигнальными сообщениями между различными сетями, иначе говоря, Softswitch координирует действия, обеспечивающие соединение с логическими объектами в разных сетях и преобразует информацию в сообщениях таким образом, чтобы они были поняты на обеих сторонах разнородных сетей.

Основные типы сигнализации, которые использует Softswitch:

  • сигнализация для управления соединениями;
  • сигнализация для взаимодействия различных Softswitch между собой;
  • сигнализация для управления транспортными шлюзами.

Основными протоколами сигнализации для управления соединениями сегодня являются SIP, ОКС-7, H.323. Также опционально используются:

  • абонентская сигнализация E-DDS-1 первичного доступа ЦСИС (цифровая сеть с интеграцией служб, ISDN);
  • протокол абонентского доступа через интерфейс V5;
  • российская версия сигнализаций R1,R2 – R 1.5.

Основными протоколами сигнализации управления транспортными шлюзами являются MGCP и MEGACO/Н.24, а основными протоколами сигнализации взаимодействия между Softswitch — SIPТ и BICC (рис. 3.1).




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2154; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.