Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ВОПРОС 4. Цикл Кребса. Биологическое значение

РННННН

ДЫХАТЕЛЬНАЯ ЦЕПЬ О2

Н2О АТФ (окислительное фосфорилирование)

ВОПРОС №2. Макроэрги. Окислительное и субстратное фосфорилирование.

Связующим звеном между клеточными реакциями, идущими с выделением и потреблением энергии, служит аденозинтрифосфат (АТФ) (рис. 1). При катаболизме часть свободной энергии используется для синтеза АТФ из аденозиндифосфата (АДФ) и неорганического фосфата (Рi, Фн). Молекула АТФ содержит две высокоэнергетические (макроэргические) связи, которые обозначают символом «» (тильда).

 
 


Рис. 1. Схема строения аденозинтрифосфата (АТФ).

Гидролиз АТФ, в зависимости от потребностей конкретной реакции в энергии, может происходить двумя способами:
1) АТФ + Н2О АДФ + Фн - 7,3 ккал/моль (30 кДж/моль)
2) АТФ + Н2О АМФ + Ф~Фн - 7,7 ккал/моль
Ф~Фн (пирофосфат) + Н2О 2 Фн - 6,9 ккал/моль
Суммарная реакция: АТФ + Н2О АМФ + 2 Фн – 14,6 ккал/моль (59 кДж/моль).

В клетках кроме АТФ присутствуют и другие высокоэнергетические соединения, которые содержат макроэргические связи, при гидролизе которых выделяется не менее 7 ккал/моль (30 кДж/моль) стандартной свободной энергии (таблица 1).

Таблица 1. Стандартная свободная энергия гидролиза некоторых макроэргических соединений (макроэргов)

Название макроэрга Величина стандартной свободной энергии ккал/моль кДж/моль
Фосфоенолпируват 3-фосфоглицерофосфат Креатинфосфат Тиоэфиры (ацетил-SКоА, сукцинил-SKoA и др.) АТФ (→ АДФ + Фн) и другие нуклеозидтрифосфаты: ГТФ, ЦТФ, УТФ - 14,8 - 61,9 - 11,8 - 49,3 - 10,3 - 43,1 - 7,9 - 31,5 - 7,3 - 30,5

Способы синтеза АТФ в клетке:

1) Субстратное фосфорилирование – синтез АТФ из АДФ и фосфорной кислоты с использованием энергии высокоэнергетического субстрата. Этот способ синтеза АТФ не требует присутствия кислорода, т.е. происходит в анаэробных условиях. Реакции субстратного фосфорилирования происходят: 1) в процессе гликолиза (макроэргические субстраты - 3-фосфо-глицерат и фосфоенолпируват); 2) с использованием креатинфосфата; 3) в одной реакции ЦТК, с использованием макроэргического субстрата – сукцинил-КоА.

2) Окислительное фосфорилирование – синтез АТФ из АДФ и фосфорной кислоты с использованием энергии окисления водорода в дыхательной цепи. Этот способ синтеза АТФ требует присутствия кислорода, т.е. происходит в аэробных условиях. Дыхательная цепь локализуется во внутренней мембране митохондрий.

ВОПРОС 3. Биологическое окисление. Основные положения теорий теории А.М. Баха и В.И. Палладина. Современные представления о биологическом окислении.

Биологическое окисление -совокупность окислительных реакций, происходящих в организме и обеспечивающих его энергией и метаболитами для осуществления процессов жизнедеятельности. Функции биологического окисления:

I. Энергетическое обеспечение: поддержание температуры тела, химических синтезов, осмотических явлений, электрических процессов, механической работы.

II. Синтез важнейших метаболитов.

III. Регуляция обмена веществ.

IV. Обезвреживание ксенобиотиков (чужеродных веществ).

V. Устранение вредных для клетки продуктов обмена.

История развития представлений о механизмах биологического окисления.

Перекисная теория А.Н.Баха. В 1896-1897 гг. русский ученый А.Н. Бах сформулировал теорию медленного окисления, согласно которой молекулярный кислород активируется с помощью ненасыщенной органической молекулы, при этом образуется пероксид этого соединения. Возникшие пероксиды органических соединений, как и пероксид водорода, могут окислять другие вещества при каталитическом воздействии пероксидазы.

Теория биологического окисления В.И. Палладина. В 1912 г. Палладин В.И впервые высказал идею о том, что биологическое окисление есть перенос водорода от окисляемого вещества навстречу кислороду с образованием воды в качестве конечного продукта. Ученый выделил две фазы биологического окисления: 1-ая фаза - анаэробная, протекает без участия кислорода, на этом этапе водород от органических молекул передается на промежуточные переносчики; вторая фаза - аэробная, протекает с участием кислорода, на этом этапе водород от промежуточных переносчиков передается на кислород с образованием воды:

1-ая фаза: SH2 + RS + RH2 2-ая фаза: RH2 + ½ O2 → H2O + R

Концепция Палладина В.И. быстро получила подтверждение: были выделены и охарактеризованы разнообразные дегидрогеназы - ферменты, ускоряющие реакции окисления органических молекул (SH2) с участием различных коферментов - по теории Палладина В.И. – промежуточных переносчиков водорода (R).

Современные представления о биологическом окислении. Химические реакции, в процессе которых происходит перенос электронов от одной молекулы к другой, называются окислительно-восстановительными реакциями. Соединения, отдающие электроны в такой реакции, называются донорами электронов, а соединения, присоединяющие электроны, - акцепторами электронов или окислителями. В общем виде окислительно-восстановительную реакцию можно написать:

Донор электронов ↔ е- + Акцептор электронов

Способы передачи электронов от одной молекулы к другой:

I. Прямой перенос электронов.
Например, окислительно-восстановительная пара Fe2+ и Fe3+ :
Fe2+ ↔ е- + Fe3+

II. Перенос электронов в составе атомов водорода(дегидрирование). Напомним, что атом водорода состоит из протона (Н+) и электрона (е-). В этом случае общее уравнение имеет вид:
ВН2 + А ↔ В+ АН2,
где ВН2 – донор водорода (ВН2 ↔ В+ 2е- + 2Н+), А – акцептор водорода.

III. Перенос электронов путем прямого взаимодействия органического восстановителя с кислородом. В результате образуется продукт, в котором содержится ковалентно связанный кислород. Например, введение в состав органической молекулы атома кислорода с образованием гидроксильной группы:
R–CH3 + ½ О2 ↔ R–CH2–OH. В этой реакции донором электронов является органическая молекула, а атом кислорода играет роль акцептора.

Согласно современной теории биологического окисления все окислительно-восстановительные реакции катализируются ферментами класса оксидоредуктаз. Все оксидоредуктазы относятся к сложным ферментам, т.е. содержат белковую часть – апофермент и небелковую часть – кофермент. Именно кофермент в составе оксидоредуктазы служит промежуточным переносчиком электронов/водорода от донора к акцептору в ходе окислительно-восстановительной реакции.

Выделяют два типа биологического окисления:

I. Свободное окисление, при котором свободная энергия, высвобождающаяся при окислении органических молекул, переходит в тепловую энергию и рассеивается. К таким реакциям относятся реакции: микросомального окисления, генерации активных форм кислорода и антиоксидантной защиты.

II. Окисление, сопряженное с фосфорилированием АДФ и синтезом АТФ. Этот тип биологического окисления осуществляется в электронтранспортной цепи (дыхательной цепи), локализованной во внутренней мембране митохондрий или сопряжен с фосфорилированием АДФ на уровне субстрата.

Цикл трикарбоновых кислот (ЦТК), цикл Кребса или цикл лимонной кислоты является общим этапом катаболизма углеводов, жиров и белков. Сложные молекулы органических веществ превращаются в один общий метаболит – активную форму уксусной кислоты:

ацетил-коферментА: СН3 – С S-КоА.
О

Ацетил-КоА окисляется в ЦТК, который локализуются в матриксе митохондрий. ЦТК включает ряд последовательных реакций:

1. Конденсация ацетил-КоА с оксалоацетатом (щавелевоуксусной кислотой) с образованием цитрата (лимонной кислоты) фермент – цитратсинтаза:
Ацетил-КоА + оксалоацетат + Н2О → цитрат + HS-KoA

<== предыдущая лекция | следующая лекция ==>
Линейная множественная регрессия | Переносчики электронов в дыхательной цепи
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1248; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.