Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эвольвентное зацепление. Пусть профиль зуба звена 1 (Рис




Рис. 1.29

Пусть профиль зуба звена 1 (Рис. 1.29) очерчен по эвольвенте , a профиль зуба звена 2 по эвольвенте . Поместим центры этих окружностей в точку и точку и приведём эвольвенты в соприкосновение в точке К.

Нормаль к эвольвенте в точке К должна быть касательной к , а нормаль - касательной к . В точке касания нормаль должна быть общей к обоим профилям и, следовательно, точка К лежит на общей касательной к основным окружностям. При вращении звеньев 1 и 2 точка касания эвольвент перемещается по отрезку АВ этой касательной, так как вне отрезка АВ эвольвенты не могут касаться, то есть иметь общую нормаль. Отсюда следует, что линия зацепления эвольвентных профилей совпадает с общей нормалью к ним и лежит на отрезке АВ общей касательной к основным окружностям. Точка Р – полюс зацепления занимает неизменное положение, следовательно центры в относительном движении представляют собой окружности с радиусами и соответственно. По свойству центроид начальные окружности при движении звеньев перекатываются без скольжения. Итак, при эвольвентном зацеплении передаточное отношение имеет постоянную величину

Знак (-) относится к внешнему зацеплению, знак (+) относится к внутреннему зацеплению.

Из треугольника и треугольника следует:

,

следовательно, отсюда можно сделать выводы:

1. При эвольвентном зацеплении изменение межосевого расстояния не влияет на величину передаточного отношения, вследствие неизменности радиусов основных окружностей. При изменении межосевого расстояния изменятся лишь радиусы и угловые зацепления .

2. При эвольвентном зацеплении передаточное отношение, согласно основной теории имеет постоянную величину.

3. При внешнем зацеплении эвольвентные профили являются сопряжёнными только в пределах отрезка АВ линии зацепления.

Линией зацепления (АВ) называется геометрическое место точек соприкасания профилей боковых поверхностей зубьев колес, принадлежащее неподвижному пространству. Точки и - сопряженные.

Точки, касающиеся друг друга на линии зацепления, называются сопряжёнными.

Точки А и В - теоретические границы зацепления, за этими точками зацепление допускать нельзя - наступит заклинивание передачи.

 

Основные размеры зубчатых колёс с эвольвентным профилем

Рис. 1.30

Эвольвентные профили удовлетворяют условию синтеза зубчатого зацепления - получению заданного передаточного отношения . Выполнение дополнительного условия синтеза зависит от размеров зубьев. Эти размеры удобно задавать в долях, какой - либо одной линейной величины. Выразим длину некоторой окружности, имеющей диаметр d через число зубьев Z.

,

где: Р - окружной шаг, то есть расстояние, измеренное по дуге окружности диаметром d между двумя соответствующими точками соседних зубьев.

Отсюда: или ,

где, m – отношение окружного шага к числу , называется модулем зуба. Модуль зуба выбирается из ряда рациональных чисел от 0,05 до 100.

Делительной окружностью называется окружность, для которой модуль имеет стандартную величину, она является базовой для определения размеров зубьев. Иногда начальные окружности и делительные окружности r совпадают, но при этом надо иметь в виду их принципиальное отличие. Делительная окружность - есть характеристика одного зубчатого колеса, а начальные окружности дают характеристику зацепления двух зубчатых колес, и диаметры этих окружностей зависят от межосевого расстояния.

Делительная окружность делит зуб на две части: головку и ножку. Делительной головкой зуба называется часть зуба расположенная между делительной окружностью r и окружностью вершин . Ножкой зуба называется часть зуба расположенная между делительной окружностью r и окружностью впадин .

Различают внешние и внутренние зубья. У внешних, окружность вершин находится снаружи окружности впадин, а у внутренних, внутри окружности впадин.

- высота головки зуба;

- высота ножки зуба.

- общая высота

, так как между окружностями вершин одного зуба и окружностями впадин другого зуба должен быть зазор называемый радиальным зазором (С).

Для нормальных колёс высоты зуба ; . Для укороченных зубьев: . Радиальный зазор .

Каждый зуб очерчен двумя симметрично расположенными профилями. Расстояние между этими профилями, измеренное по какой - либо окружности называется толщиной зуба. Толщина по делительной окружности обозначается S.

Способы нарезания зубчатых колёс

Применяются два основных способа нарезания зубчатых колес: копирование и обкатка (огибание). Существуют и другие способы, такие как отливка, накатка, при которой зубья образуются без дополнительной обработки, но они не обеспечивают высокую точность изготовления зубчатых колёс.

По способу копирования специальной дисковой (рис. 1.31) или пальцевой фрезой (б) прорезают впадины, вследствие чего впадина соответствует очертаниям инструмента. После того как очередная впадина прорезана и закончился холостой ход фрезы, заготовку поворачивают на угол:

; -угловой шаг.

Недостатки: метод малопроизводителен, низкая точность нарезания колёс, сложный инструмент, необходима большая номенклатура инструмента.

Рис. 1.31

 

Рассмотрим метод обкатки. Если режущий инструмент выполнить в виде зубчатой рейки (рис. 1.32), то методом обката им можно нарезать зубчатое колесо с эвольвентным профилем зубьев.

Рассмотрим контур зубьев рейки (рис. 1.33), который называется исходным, так как он служит основой для определения форм и расположения режущих кромок.

 

Рис. 1.32

 

Рис. 1.33

Профиль зуба режущего инструмента отличается от исходного профиля тем, что высота головки увеличена на , то есть на величину радиального зазора, так как головка зуба рейки вырезает ножку зуба в заготовке. Этот контур называют производящим.

Прямая (С-С) проходящая по середине общей высоты зуба называется средней прямой (иногда делительной);

(коэффициент зуба).

(При обкатке режущим инструментом, заготовке сообщается такое относительное движение, какое имели бы они в зацеплении.)

Существуют следующие разновидности метода обкатки.

Режущий инструмент выполняют в виде зубчатой рейки (рис. 1.33).

преимущество: простота инструмента и высокая точность изготовления зубчатых колес.

2. Режущий инструмент выполнен в виде зубчатого колеса, высота головки которого , который носит название долбяка (рис. 1.34).

преимущество: можно нарезать зубчатые колеса с внутренними и наружными зубьями.

3. Режущий инструмент выполнен в виде червячной фрезы, продольное сечение которой имеет вид зубчатой рейки

преимущество: непрерывность процесса, процесс более производителен.

недостаток: можно нарезать зубья только с внешним зацеплением.

Рис. 1.34

Нулевые, положительные и отрицательные зубчатые колёса и передачи

Возможны три варианта расположения средней линии инструментальной рейки относительно делительной окружности колеса.

1. Средняя прямая производительного контура С-С касается делительной окружности заготовки (рис. 35 б). Средняя линия катится без скольжения по делительной окружности равной ширине впадине рейки по средней линии. . Это колесо называется колесом с равноделенным шагом.

Рис. 1.35

2. Средняя линия С-С смещена (поднята) на величину , где Х - коэффициент смещения (рис. 1.35 а). По делительной окружности катится без скольжения начальная окружность Н-Н, отстоящая от средней прямой линии на . Толщина зуба по делительной окружности оказывается больше ширины впадины, что соответствует увеличению ширины впадины производящего контура начальной прямой Н-Н. Из рисунков следует:

  (1.14)

Коэффициент смещения Х в этом случае считается положительным.

3. Средняя прямая С-С смещена к центру на величину Хm, при чем коэффициент смещения Х считается отрицательным (рис. 1.35 в).

Толщина зуба по делительной окружности тоже определяется по формуле (1.14) и вследствие того, что , оказывается меньше, чем у колеса с равноделенным шагом.

Зубчатые колеса, нарезанные со сдвигом рейки, называются исправленными колесами. Колеса, нарезанные с положительным сдвигом, называют положительными. А нарезанные с отрицательным сдвигом - отрицательными. Колеса, нарезаемые без сдвига, называют нулевыми колесами.

Для того чтобы, определить к какой из этих групп относится зубчатое колесо, надо определить толщину его зубьев по делительной окружности.

В зависимости от смещений каждого колеса можно получить три типа передач отличающихся расположением начальных и делительных окружностей.

I тип (рис. 1.36 а). Эти окружности совпадают, если передачи удовлетворяют условию , передача называется нулевой,

то есть, передачи, составленные из колес без смещения и передачи в которых отрицательное смещение одного колеса равно по абсолютной величине положительному смещению другого колеса (равносмещенные).

Межосевое расстояние в этих передачах называется делительным межосевым расстоянием, а угол зацепления равен углу профиля производящего контура.

II тип (рис. 1.36 б). В передачах, у которых по делительным окружностям толщина зуба одного колеса больше ширины впадины другого, для зацепления без бокового зазора межцентровое расстояние должно быть больше а.

Соответственно увеличивается и угол .

III тип (рис. 1.36 в). Аналогично для передач, у которых по делительной окружности толщина зубьев одного из колес меньше впадины другого, имеем . Эти передачи получаются при

Рис. 1.36

Геометрический расчет зубчатых передач при заданных смещениях X1 и X2

Для вычисления и определяем сначала толщину зуба по начальной окружности.

Рис. 1.37

Из (рис. 1.37) с учетом уравнения эвольвенты имеем:

Подставив значение толщины зуба по делительной окружности:

и учитывая

и ,

где - шаг по начальной окружности получаем:

  (1.15)

Для начальных окружностей сумма толщин зубьев равна шагу

Отсюда с учетом формулы (1.15)

по таблице определяем .

Радиусы начальных окружностей определим из

из

.

Радиусы впадин rf1 получаются из условия, что делительная головка режущего инструмента, равная по высоте , при обработке проходит внутрь делительной окружности на величину . Отсюда:

,

где , ,

- делительная окружность,

- высота ножки,

- смещение рейки.

Радиусы вершин получаются из условия получения радиального зазора .

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 812; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.