Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электро-, гидро-, пневмопривод механизмов

Лекция 10

Уравновешивание сил инерции вращающихся звеньев

При движении звеньев механизма в кинематических парах возникают дополнительные нагрузки от сил инерции звеньев. Эти нагрузки могут являться причиной вибраций, преждевременного износа, снижают кпд и производительность машины. Особенно нежелательна неуравновешенность в быстроходных звеньях. Поэтому любой вал, ротор в процессе изготовления должен быть уравновешен, чтобы силы инерции, возникающие при его вращении, взаимно компенсировались и не передавались на валы и опоры.

Уравновешивание обеспечивается постановкой противовесов – дополнительных масс, создающих силы инерции, противоположные силам инерции, возникающим в звеньях при работе механизма.

Для уравновешивания сил инерции от масс, расположенных в одной плоскости, достаточна постановка одного противовеса. Такое уравновешивание называется статическим уравновешиванием или статической балансировкой. Если массы расположены в разных плоскостях, то возникающие силы инерции создают моменты, изгибающие вал и соответственно увеличивающие нагрузки на опоры. В этом случае необходимо поставить два противовеса, расположенных в двух плоскостях, находящихся на некотором расстоянии друг от друга. Такое уравновешивание называется динамическим уравновешиванием или динамической балансировкой.

Механизм – это система, предназначенная для преобразования движения одних твердых тел в требуемые движения других твердых тел. Если в преобразовании движения, кроме твердых тел, участвуют жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим. Среди гидравлических механизмов наибольшее распространение имеет гидравлический привод (гидропривод). Приводом машин и механизмов называется система взаимосвязанных устройств для приведения в движение одного или нескольких твердых тел, входящих в состав машины или механизма. Основными типами приводов являются: электропривод, гидропривод и пневмопривод.

В состав гидропривода входят гидронасос и гидродвигатель. Гидронасосом называется устройство для преобразования механической энергии твердого тела в механическую энергию жидкости. Гидродвигатель – это устройство, предназначенное для преобразования механической энергии жидкости в механическую энергию твердого тела. Часто одно и то же устройство может выполнять как функцию насоса, так и функцию двигателя.

 

Рисунок 33

 

На рисунке 33 показана схема типового гидропривода (часто применяемого в машинах-автоматах). Гидродвигатель 1 (обычно называемый гидроцилиндром) выполнен в виде поршня, перемещающегося в цилиндре под действием сжатой жидкости. Насос 2 может быть любого вида. Для изменения движения поршня гидроцилиндра служит распределитель 3. В положении распределителя, указанном на схеме, жидкость поступает в левую полость гидроцилиндра и поршень идет вправо (рабочий ход). При перемещении подвижной части распределителя влево жидкость от насоса идет в правую полость гидроцилиндра и поршень идет влево. Перемещение подвижной части распределителя достигается путем переменного включения двух злектромагнитов 6. Тормозное устройство 4 при рабочем ходе включено в сливную линию. Оно выполнено в виде регулируемого дросселя – устройства, в котором перемещение подвижной части вызывает уменьшение площади сечения для прохода жидкости (проходного сечения). При уменьшении площади проходного сечения увеличивается давление в сливной полости гидроцилиндраи происходит торможение. Переливной клапан 5 служит для слива в бак части жидкости, подаваемой насосом, при уменьшении скорости поршня. Пружина клапана подобрана так, что он открывается по достижении определенного давления. Гидродвигатель 1 в рассматриваемой схеме называется объемным, т.к. преобразование энергии жидкости в механическую энергию поршня происходит при периодическом изменении объема его рабочих полостей. Соответственно и весь гидропривод называется объемным. Этот гидропривод можно назвать также гидравлическим механизмом, предназначенным для преобразования вращательного движения вала насоса в прямолинейное движение поршня.

Как и в механизме, состоящем только из твердых тел, уравнение движения гидравлического механизма есть дифференциальное уравнение второго порядка, из которого находится зависимость обобщенной координаты механизма от времени. Отличие состоит лишь в том, что в него входят параметры, зависящие от давления жидкости в разных частях механизма.

Для объемного гидропривода, показанного на рисунке 33, уравнение движения (при постоянной приведенной массе) имеет вид:

,

где

mпр – приведенная масса движущихся частей насоса,

РД – приведенная движущая сила,

РС – приведенная сила сопротивления.

PД = p1.А1,

РС =Rпр+ р2. 1 –АШ)

Давление p1 зависит от давления на выходе из насоса и потерь давления в напорной линии. Давление р2 зависит от потерь давления в сливной линии и потерь давления в тормозном устройстве. В приведенных формулах А1 – площадь поршня; АШ – площадь штока.

Пневмопривод обычно по своему устройству аналогичен гидроприводу, только насос заменяется источником сжатого воздуха, а вместо сливной линии и сливного бака вводится линия, соединяющая нерабочую полость цилиндра с атмосферой.

Для решения задач динамики механизмов с пневмоприводом необходимо знать уравнения массового расхода газа при истечении газа из емкости, где поддерживается постоянное давление, и при движении газа по трубопроводу с учетом местных сопротивлений. Здесь определяется массовый расход газа в отличие от задач динамики гидропривода, где принято определять объемный расход жидкости. Это различие связано с тем, что объем газа существенно зависит от давления и температуры.

Электропривод представляет собой электромеханическую систему, состоящую из электродвигателя и механической части в виде одного или нескольких типов механизмов для преобразования вращения ротора в требуемое движение исполнительного механизма. Электропривод может использоваться, в том числе, и для приведения в действие насоса гидропривода или компрессора в пневмоприводе.

Для исследования динамики электромеханической системы применяют уравнения Лагранжа-Максвелла, которые имеют форму уравнений Лагранжа второго рода и позволяют автоматически получать не только уравнения движения механической части системы, но и связанные с ними уравнения электрической части. Эти вопросы обычно подробно изучаются в университетских курсах теории механизмов и машин и в данном коротком курсе не рассматриваются.

<== предыдущая лекция | следующая лекция ==>
Коэффициент полезного действия системы механизмов | Общие методы синтеза механизмов
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 658; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.