Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Микроэлементы




Железо. Среднее содержание железа в растениях составляет 20-80 мг на 1 кг сухой массы. Ионы Fe3+ почвенного раствора восстанавливаются редокс-системами плазмалеммы клеток ризодермы до Fe2+ и в такой форме поступают в корень.

Железо необходимо для функционирования основных редокс-систем фотосинтеза и дыхания, синтеза хлорофилла, восстановления нитратов и фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении (хлорозе) листьев и быстром их опадении.

Марганец в клетки поступает в форме ионов Mn2+. Среднее его содержание составляет 1 мг на 1 кг сухой массы. Марганец накапливается в листьях. Он необходим для фоторазложения воды с выделением кислорода и восстановления углекислого газа при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Два фермента цикла Кребса - малат- и изоцитратдегидрогеназы - активируются ионами марганца. Он также необходим для функционирования нитратредуктазы при восстановлении нитратов. Марганец является кофактором РНКполимеразы и ауксиноксидазы, разрушающей фитогормон 3-индолилуксусную кислоту.Характерный симптом марганцевого голодания - точечный хлороз листьев, когда между жилками появляются желтые пятна, а затем клетки в этих участках отмирают.

Молибден. Наибольшее содержание молибдена характерно для бобовых (0,5-20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2 мг на кг сухой массы. Он поступает в растения в форме аниона МоО2-4, концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе сосредоточен, в основном, в хлоропластах. Молибден входит в состав нитратредуктазы и нитрогеназы, а также необходим для биосинтеза легоглобина. Как металл-активатор молибден участвует в реакциях аминирования и переаминирования, для включения аминокислот в пептидную цепь, работы таких ферментов как ксантиноксидаза и различных фосфатаз.

При недостатке молибдена в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдаются деформации листовых пластинок. При высоких дозах молибден токсичен. При недостатке молибдена молодые листья по краям приобретают серую, а затем коричневую окраску, теряют тургор, а затем ткани листа отмирают и остаются только жилки в виде хлыстиков.

Кобальт. Среднее содержание кобальта в растениях 0,02 мг на 1 кг сухой массы. Кобальт необходим бобовым растениям для обеспечения размножения клубеньковых бактерий. В растениях кобальт встречается в ионной форме и в витамине В12. Растения не вырабатывают этот витамин. Он синтезируется бактероидами клубеньков бобовых растений и участвует в синтезе метионина в бактероидах. При старении клубеньков и прекращении фиксации азота витамин выходит в цитоплазму клеток клубеньков. Наряду с магнием и марганцем кобальт активирует фермент гликолиза фосфоглюкомутазу и фермент аргиназу, гидролизующий аргинин.Внешние признаки недостатка кобальта сходны с признаками азотного голодания.

Медь поступает в клетки в форме иона Сu2+. Среднее содержание меди в растениях 0,2 мг на кг сухой массы. Около 70 % всей меди, находящейся в листьях, сосредоточены в хлоропластах и почти половина ее в составе пластоцианина - переносчика электронов между фотосистемами II и I. Она входит в состав ферментов, катализирующих окисление аскорбиновой кислоты, дифенолов и гидроксилирование монофенолов - аскорбатоксидазы, полифенолоксидазы, ортодифенолоксидазы и тирозиназы. Два атома меди функционируют в цитохромоксидазном комплексе дыхательной цепи митохондрий. Медь входит в состав нитратредуктазного комплекса и влияет на синтез легоглобина. Для биосинтеза этилена также необходим медьсодержащий фермент. Влияя на содержание в растениях ингибиторов роста фенольной природы медь повышает устойчивость растений к полеганию. Она также повышает засухо-, морозо- и жароустойчивость. Недостаток меди вызывает задержку роста и цветения, хлороз, потерю тургора и завядание растений. У злаков при недостатке меди не развивается колос, у плодовых появляется суховершинность. При дефиците меди белеют и отмирают кончики листьев, листья и плоды плодовых деревьев покрываются бурыми пятнами.

Цинк. Содержание цинка в надземных частях бобовых и злаковых растений составляет 15-60 мг на кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая - в семенах.

Цинк поступает в растение в форме катиона Zn2+. Он необходим для функционирования ряда ферментов гликолиза - гексокиназы, енолазы, триозофосфатдегидрогеназы, альдолазы, а также входит в состав алкогольдегидрогеназы. Цинк активирует карбоангидразу, катализирующую реакцию дегидратации гидрата оксида углерода: Н2СО3 ® СО2 + Н2О, что помогает использованию углекислого газа в процессе фотосинтеза. Цинк участвует в образовании аминокислоты триптофана. Именно с этим связано влияние катионов цинка на синтез белков, а также фитогормона 3-индолилуксусной кислоты, предшественником которой является триптофан. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост.

При дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корнях, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы. При недостатке цинка в растениях уменьшается содержание сахарозы и крахмала, увеличивается количество органических кислот и небелковых соединений азота - амидов и аминокислот. Наиболее характерный признак цинкового голодания - это задержка роста междоузлий и листьев, появление хлороза и развитие розеточности.

Бор. Содержание составляет 0,1 мг на кг сухой массы. В боре наиболее нуждаются двудольные растения. Много бора в цветках. В клетках большая часть бора сосредоточена в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен. При недостатке нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов и плодоношение. Он не может реутилизироваться и поэтому при борном голодании прежде всего отмирают конусы нарастания, останавливается рост побегов и корней, листовые пластинки утолщаются, скручиваются, становятся ломкими, цветки не образуются.

Список литературы

1. Малиновский В.И. Физиология растений. Учеб. пособие/ Малиновский В.И.. – Владивосток: Изд-во ДВГУ, 2004. с. 106

2. Алехина Н.Д. Физиология растений/ Н.Д. Алехина, Ю.В. Балнокин, В.Ф. Гавриленко и др.; Под ред. И.П. Ермакова.-М.: Издательский центр «Академия», 2005.-640с.

3. Физиология и биохимия сельскохозяйственных растений/ под общей редакцией Н.Н. Третьякова. Учебники и учеб.пособия для студ. Высш. Учеб.заведений.- М: Колос, 1998г.- 640с.

4. Полевой В.В. Физиология растений:Учеб. для биол.спец. вузов./ Полевой В.В. М.: Высшая школа, 1989г.-464с.

5. Медведев С.С. Физиология растений:Учебник/Медведев С.С..:СПб.:Изд-во С.-Петерб. Ун-та, 2004.-336с.

6.Якушкина Н.И. Физиология растений /Якушкина Н.И.:Учеб.пособие для студентов биол.спец. высш. Пед.учеб.заведений.-2-е изд., перераб.. М.: Просвещение, 1993г.-335с.

 

 

Лекции 7,8 (4 часа)

Рост и развитие растений

 

План

1.Фитогормоны –регуляторы процесса роста и развития. Рост клеток растительного организма

2.Особенности роста растительного организма

3.Развитие растений Фазы онтогенеза

 

1.Фитогормоны –регуляторы процесса роста и развития. Рост клеток растительного организма

 

. Онтогенезом называют индивидуальное развитие организма от зиготы или вегетативного зачатка до естественной смерти. В ходе онтогенеза реализуется наследственная информация организма – его генотип – в конкретных условиях окружающей среды, в результате чего формируется фенотип, то есть совокупность всех признаков и свойств данного индивидуального организма.

Развитие – это качественные изменения в структуре и функциональной активности растения и его частей в процессе онтогенеза. Возникновение качественных различий между клетками, тканями и органами получило название дифференцировки.

Рост – необратимое увеличение размеров и массы клетки, органа или всего организма, обусловленное новообразованием элементов их структур.

Фитогормоны. Они образуются в процессе обмена веществ растений и оказывают в очень малых количествах регуляторное и координирующее влияние на физиологические процессы в разных органах растения. Различают стимуляторы и ингибиторы роста. Стимуляторы роста, применяемые в сверхоптимальных дозах, способны подавлять ростовые процессы.

Ауксины. Главным представителем ауксинов в растениях является индолил-3-уксусная кислота (ИУК). Она синтезируется из триптофана в верхушке побега. Разрушается ИУК ферментом ИУК-оксидазой. Ауксин стимулирует деление и растяжение клеток, необходим для образования проводящих пучков и корней. ИУК активирует протонную помпу в плазмалемме, что приводит к закислению и разрыхлению клеточной стенки и тем самым способствует росту клеток растяжением. Комплекс ИУК с рецептором транспортируется в ядро и активирует синтез РНК, что в свою очередь приводит к усилению синтеза белков.

Цитокинины. Цитокинины образуются путем конденсации аденозин-5-монофосфата и изопентенилпирофосфата в апикальной меристеме корня. Много цитокининов в развивающихся семенах и плодах. Цитокинины индуцируют в присутствии ауксина деление клеток, активируют дифференциацию пластид, повышают активность АТФ-синтетазы, способствуют выходу почек, семян и клубней из состояния покоя, предотвращают распад хлорофилла и деградацию клеточных органелл. Ткани, обогащенные цитокининами, обладают высокой аттрагирующей способностью. Комплекс цитокининов с белковым рецептором повышает активность РНКполимеразы и экспрессию генов. При этом увеличивается число полисом и активируется синтез белка.

Гиббереллины. В настоящее время известно более 70 гиббереллинов кислой и нейтральной природы. Наиболее известным и распространенным гиббереллином является гибберелловая кислота. Гиббереллины синтезируются из ацетилкоэнзима А в листьях и корнях. Гиббереллины способствуют удлинению стебля, выходу семян из состояния покоя, формированию гранулярного эндоплазматического ретикулума, образованию цветоноса и цветению, активируют деление клеток в апикальных и интеркалярных меристемах, повышают активность ферментов синтеза фосфолипидов. Комплекс гиббереллина с белковым цитоплазматическим рецептором стимулирует синтез нуклеиновых кислот и белка.

Абсцизовая кислота. Она синтезируется в листьях и корневом чехлике двумя путями: из мевалоновой кислоты или путем распада каротиноидов. Абсцизовая кислота (АБК) тормозит рост растений и является антагонистом стимуляторов роста. Однако АБК активирует удлинение гипокотиля огурца, образование корней у черенков фасоли. АБК ускоряет распад нуклеиновых кислот, белков, хлорофилла, ингибирует мембранную протонную помпу. АБК накапливается в клетках при неблагоприятных условиях внешней среды, стареющих листьях, покоящихся семенах, в отделительном слое черешков листьев и плодоножек.

Этилен. Газ этилен синтезируется из метионина или путем восстановления ацетилена. Много его накапливается в стареющих листьях и созревающих плодах. Он ингибирует рост стеблей и листьев. Удлинение стебля тормозится из-за изменения направления роста клеток с продольного на поперечное, что приводит к утолщению стебля. Обработка этиленом индуцирует корнеобразование, ускоряет созревание плодов, прорастание пыльцы, семян, клубней и луковиц.

Брассиностероиды. Брассиностероиды содержатся в разных органах растений, но особенно много их в пыльце. Они стимулируют рост в длину и толщину проростков, усиливая как деление, так и растяжение клеток.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 598; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.