Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Защита от электромагнитных полей и излучений




В зависимости от физической природы возникающего шума, он может быть механическим, аэродинамическим, электромагнитным, гидродинамическим. Механические шумы возникают при работе различных машин и механизмов и вызваны трением и соударениями составляющих их деталей, ударными процессами и др. Аэродинамические и гидродинамические шумы возникают при течении газа или жидкости, при работе вентиляторов, компрессоров, двигателей внутреннего сгорания, насосов для перекачки жидкостей и т.д. Электромагнитные шумы сопровождают работу различных электроустановок. Для защиты человека от негативных шумовых воздействий разработаны методы и средства коллективной и индивидуальной защиты (ГОСТ 12.1.029-80* «Средства и методы защиты от шума. Классификация») (рис. 6.4)


ПО СПОСОБУ РЕАЛИЗАЦИИ
ПО ОТНОШЕНИЮ К ИСТОЧНИКУ

Рисунок 6.4 – Классификация коллективных средств защиты от шума (ГОСТ 12.1.029-80*)


Все многообразие средств и способов борьбы с шумом сводятся к следующему:

1) необходимо максимально снизить уровень шума в источнике с помощью организационно-технических и акустических средств;

2) если это не удается, то применяют меры по уменьшению шума на пути его распространения с помощью акустических и архитектурно-планировочных мероприятий;

3) в случае, когда выше перечисленные меры не оказались эффективными, проводят защиту объекта с применяя коллективные и индивидуальные акустические средства защиты и организационные мероприятия (нормирование времени пребывания в зоне шума, контроль за дозой шума и т.д.).

Итак, наиболее рациональным способом реализации шумозащиты является снижение звуковой мощности источника шума. Уровень звуковой мощности (Lр) рассчитывают по следующей формуле:

4.5.2.5

где P – звуковая мощность, Вт;

P0 – пороговая звуковая мощность, равная 10-12 Вт.

Этот способ борьбы с шумом носит название уменьшения шума в его источнике. Снижение механических шумов достигается:

- улучшением конструкции машин и механизмов;

- заменой деталей из металлических материалов на пластмассовые;

- заменой ударных технологических процессов на безударные;

- нанесением смазки на трущиеся детали и другими мероприятиями.

Для уменьшения аэро- и гидродинамических шумов рекомендуется:

- снижение скорости обтекания газовыми или воздушными потоками препятствий;

- улучшение аэродинамики тел, работающих в контакте с потоками;

- снижение скорости истечения газовой струи и уменьшения диаметра отверстия, из которого эта струя истекает;

- выбор оптимальных режимов работы насосов для перекачивания жидкости;

- правильное проектирование и эксплуатация гидросистем и ряд других мероприятий.

Для борьбы с электромагнитными шумами необходимо:

- тщательно уравновешивать вращающиеся детали электромашин (ротор, подшипники);

- осуществлять тщательную притирку щёток электродвигателей;

- применять плотную прессовку пакетов трансформаторов и т.д.

Следующим эффективным способом снижения шума является изменение направленности его излучения, т.е. применение рациональных планировочных решений. Этот способ применяется в том случае, когда работающее устройство направленно излучает шум (например, труба для сброса в атмосферу сжатого воздуха). Направленная звуковая волна должна быть ориентирована в противоположную от рабочего места или жилого строения сторону. При расположении шумного предприятия или объекта на территории города, они должны быть максимально удалены от жилых домов. Определить расстояние от шумного объекта до жилой зоны (дома) можно с помощью измерительных приборов или проведя акустические расчеты. Расчет проводится по СНиП 23-03-2003 «Защита от шума» по уровням звукового давления L, дБ, в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц или по уровням звука по частотной коррекции «А» LA, дБА.

Последовательность акустического расчета такова:

- выявление источников шума и определение их шумовых характеристик;

- выбор точек в помещениях и на территориях, для которых необходимо провести расчет (расчетных точек);

- определение путей распространения шума от источника (источников) до расчетных точек и потерь звуковой энергии по каждому из путей (снижение за счет расстояния, экранирования, звукоизоляции ограждающих конструкций, звукопоглощения и др.);

- определение ожидаемых уровней шума в расчетных точках;

- определение требуемого снижения уровней шума на основе сопоставления ожидаемых уровней шума с допустимыми значениями;

- разработка мероприятий по обеспечению требуемого снижения шума;

- поверочный расчет ожидаемых уровней шума в расчетных точках с учетом выполнения строительно-акустических мероприятий.

Октавные уровни звукового давления L, дБ, в расчетных точках соразмерных помещений (с отношением наибольшего геометрического размера к наименьшему не более 5) при работе одного источника шума следует определять по формуле:

6.6

где Lw – октавный уровень звуковой мощности, дБ;

c – коэффициент, учитывающий влияние ближнего поля в тех случаях, когда расстояние r меньше удвоенного максимального габарита источника (r < 2 lмакс);

F – фактор направленности источника шума (для источников с равномерным излучением F = 1);

W – пространственный угол излучения источника, рад.;

r – расстояние от акустического центра источника шума до расчетной точки, м (если точное положение акустического центра неизвестно, он принимается совпадающим с геометрическим центром);

k – коэффициент, учитывающий нарушение диффузности звукового поля в помещении (принимают в зависимости от среднего коэффициента звукопоглощения a cp);

B – акустическая постоянная помещения, м2, определяемая по формуле

6.7

А – эквивалентная площадь звукопоглощения, м2, определяемая по формуле

6.8

a i – коэффициент звукопоглощения i -й поверхности;

S i – площадь i -й поверхности, м2;

Aj – эквивалентная площадь звукопоглощения j -го штучного поглотителя, м2;

nj – количество j -ых штучных поглотителей, шт.;

a cpсредний коэффициент звукопоглощения, определяемый по формуле

6.9

S – суммарная площадь ограждающих поверхностей помещения, м2.

Если источник шума и расчетная точка расположены на территории, расстояние между ними больше удвоенного максимального размера источника шума и между ними нет препятствий, экранирующих шум или отражающих шум в направлении расчетной точки, то октавные уровни звукового давления L, дБ, в расчетных точках следует определять:

- при точечном источнике шума (отдельная установка на территории, трансформатор и т.п.) – по формуле:

6.10

- при протяженном источнике ограниченного размера (стена производственного здания, цепочка шахт вентиляционных систем на крыше производственного здания, трансформаторная подстанция с большим количеством открыто расположенных трансформаторов) – по формуле:

6.11

где Lw, r, F, W – то же, что и в формулах (6.6- 6.9);

b а – затухание звука в атмосфере, дБ/км. При расстоянии r £ 50 м затухание звука в атмосфере не учитывают.

 

Следующий способ борьбы с шумом связан с уменьшением звуковой мощности по пути распространения шума – звукоизоляция. Практически это достигается использованием звукоизолирующих ограждений, кабин и пультов управления, звукоизолирующих кожухов и акустических экранов.

К звукоизолирующим ограждениям относятся стены, перегородки, перекрытия, остекленные проёмы, окна, двери (6.5).

Рисунок 6.5 – Виды звукоизолирующих ограждений

1 – звукоизолирующие стены, 2 – кабины и пульты управления, 3 – кожухи, 4 – акустические экраны, ИШ – источник шума

 

Нормируемыми параметрами звукоизоляции внутренних ограждающих конструкций зданий являются:

- индексы изоляции воздушного шума ограждающими конструкциями Rw, дБ,

- индексы приведенного уровня ударного шума, Lnw, дБ, (для перекрытий).

Индекс изоляции воздушного шума какой-либо конструкцией с известной частотной характеристикой изоляции воздушного шума определяется путём сопоставления этой частотной характеристики с оценочной кривой. Неблагоприятными считаются отклонения вниз от оценочной кривой.

В целом, звукоизолирующая способность конструкции тем выше, чем больше её поверхностная плотность, т.е. чем тяжелее материал из которого изготовлена конструкция, тем выше её эффективность. Как правило, в качестве звукоизолирующих материалов используют бетон, железобетон, кирпич, керамические блоки, стекло и т.д.

Применение звукоизолирующих кожухов является эффективным, простым и дешевым способом защиты персонала от шума на рабочих местах. Акустический эффект установки звукоизолирующего кожуха – снижения уровня звуковой мощности шума, излучаемого источником в пространство. Конструктивно кожухи выполняются съемными, раздвижными или капотного типа (рис. 6.6), сплошными герметичными или со смотровыми окнами или технологическими отверстиями. Изготавливаются они из листовых несгораемых или трудносгораемых материалов (сталь, дюралюминий и др.). Внутренние поверхности стенок кожухов должны быть облицованы звукопоглощающим материалом, а сам кожух изолирован от вибрации основания. Если в нем предусмотрены технологические отверстия, то они снабжаются глушителями шума.

Рисунок 6.6 – Виды звукоизолирующих кожухов

а – съёмного, б – раздвижного, в – капотного типа

 

Звукоизолирующие кабины используют для размещения в них пультов дистанционного управления или рабочих мест в шумных помещениях. Используя такие кабины можно обеспечить практически любое требуемое снижение шума. Обычно их изготавливают из кирпича, бетона и подобных материалов или сборными из металлических панелей, которые устанавливают на резиновых виброизоляторах. Стёкла кабины делают минимально возможных размеров а в качестве прозрачного материала используют толстые зеркальные стекла или пластины из плексиглаза с герметизацией по периметру резиновыми прокладками. При необходимости обеспечения высокой звукоизоляции окна и двери делают двойными с использованием звукопоглощающей прокладки.

Акустические экраны, устанавливаемые между источником шума и рабочими местами персонала (не связанного непосредственно с обслуживанием данного источника), применяют для защиты рабочих мест от прямого звука. Применение экранов в помещении оправдано только в том случае, когда уровни звукового давления в расчетной точке, создаваемый прямым звуком от экранируемого источника значительно выше уровней отраженного звука в этой точке, а на территории не менее чем на 10 дБ выше уровней, создаваемых другими источниками шума. Необходимо отметить, что в акустически не обработанных помещениях применение экранов тоже будет малоэффективно. Поэтому они должны применяться в сочетании с акустической обработкой потолка и облицовки той части помещения, где находится экран. Для облицовки могут быть использованы звукопоглощающие материалы: минераловатные плиты, маты из супертонкого стекловолокна или базальтового волокна толщиной 30 – 50 мм. Чаще всего применяют экраны плоской и П-образной формы из твердых листов толщиной 1.5 – 2 мм с обязательной облицовкой звукопоглощающим материалом поверхности, обращенной к источнику шума. Разновидностью акустического экрана является выгородка. Она представляет собой экран, окружающий источник шума со всех сторон. Выгородки целесообразно применять для источника (источников) шума, уровни звуковой мощности которого на 15 дБ и более выше, чем у остальных источников шума. Варианты экранов и выгородка представлены на рисунке 6.7.

Рисунок 6.7 – Формы акустических экранов

а – плоский, б – П-образный, в – выгородка, ИШ – источник шума, 1 – экран, 2 – расчётная точка

 

Акустические экраны могут быть стационарными и передвижными. В последнем случае зазор между полом и экраном должен быть минимален. Эффективность экранирования зависит от:

- соотношения геометрических размеров экрана с длиной волны звука, поэтому применяют их для снижения средне и высокочастотного шума.

В производственных помещениях уровень звука существенно повышается из-за отражения шума от строительных конструкций и оборудования. Поэтому для снижения уровня отражённого звука применяют специальную акустическую обработку помещения с помощью звукопоглощающих облицовок и штучных звкупоглотителей (рис. 6.8).

Рисунок 6.8 – Виды средств звукопоглощения

 

Как следует из названия этих материалов, они не отражают шум, а поглощают его. При этом колебательная энергия звуковой волны переходит в тепловую вследствие потерь на трение в звукопоглотителе.. Количественной характеристикой звукопоглощающих материалов является коэффициент звукопоглощения, который определяется выражением:

6.12

 

Где Епад, Епогл, Еотр – соответственно падающая, поглощенная и отраженная звуковая энергия. Звукопоглощающими материалами называют те у которых α >0.2.

Для снижения аэродинамического шума эффективно применение глушителей в каналах и воздуховодах на пути распространения шума от его источника до места всасывания или выброса газов. Глушители подразделяются на:

- абсорбционные – снижение шума происходит за счёт поглощения звуковой энергии порами звукопоглощаюх материалов внутри глушителя;

- реактивными (рефлексными) – снижение шума происходит в результате отражения звука обратно к источнику;

- комбинированные – за счет способности как отражать так и поглощать звук.

Выбор типа глушителей зависит от конструкции заглушаемой установки и требуемого снижения шума.

Часто перечисленных выше средств и мероприятий по защите персонала от шума не достаточно, поэтому для защиты персонала необходимо использовать индивидуальные средства защиты от шума (рис. 6.9).

Рисунок 6.9 – Классификация индивидуальных средств защиты от шума

Способы защиты от инфразвука аналогичны способам защиты от шума. К ним относятся: снижение уровня инфразвука в его источнике, увеличение жесткости колеблющихся конструкций, применение глушителей реактивного типа. Отметим, что такие методы борьбы с шумом как звукоизоляция и звукопоглощение при инфразвуке неэффективны. Для снижения или исключения вредного воздействия ультразвука, передающегося воздушным путём эффективны дистанционное управление, автоматизация процесса и звукоизолирующие кожухи из листовой стали, пластмассы (гетинакса) или резины.

Защита от электромагнитных излучений (неионизирующих и ионизирующих)

Средства и способы защиты от неионизирующих электромагнитных излучений обусловливаются видом излучения, его интенсивностью, условиями окружающей среды и многими другими факторами. Условно все методы и средства защиты от ЭМИ радиочастот разделим на две большие группы: организационные и технические (рис. 6.10)

Рисунок 6.10 – Виды защитных методов и средств защиты от электромагнитных излучений радиочастотного диапазона

 

Организационные мероприятия по защите персонала от воздействия электромагнитных полей (ЭМП) включают в себя:

- нормирование времени и интенсивности действия ЭМП;

- выбор режимов работы излучающего оборудования;

- рациональное размещение облучающих и облучаемых объектов: увеличение расстояний между ними, подъем антенн или диаграмм направленности и т.д.(защита расстоянием);

- ограничение времени и места нахождения в зоне воздействия ЭМП (защита временем);

- обозначение и ограждение зон с повышенным уровнем ЭМП;

- лечебно-профилактические мероприятия (табл. 6.1);

- обучение персонала безопасным приемам работы с источниками ЭМП.

 

Таблица 6.1 – Лечебно профилактические мероприятии по защите персонала от действия ЭМП

Коллективная защита Индивидуальная защита
- применение средств наглядного предупреждения о наличии ЭМП; - вывешивание плакатов, памяток с перечнем основных мер предосторожности; - проведение лекций по безопасности труда при работе с источниками ЭМП и профилактике переоблучений   - проведение медицинского освидетельствования при приеме на работу; - периодические медицинские обследования и врачебные наблюдения за персоналом; - объективная информация об уровне интенсивностей на рабочем месте и четкое представление об их возможном влиянии на состояние здоровья работающих; - проведение инструктажа по правилам техники безопасности при работе в условиях воздействия ЭМИ

 

Защита расстоянием – основывается на падении интенсивности излучения, которое обратно пропорционально квадрату расстояния и применяется, если невозможно ослабить ЭМП другими мероприятиями, в том числе и защитой временем. Необходимо отметить, что:

1.Этот вид защиты положен в основу зон нормирования излучений для определения необходимого разрыва между источниками ЭМП и жилыми домами, служебными помещениями и т.д.

2. Для каждой установки, излучающей электромагнитную энергию, определяются санитарно-защитные зоны, в которых ЭМП не превышает ПДУ.

Так, например, защита расстоянием от ЭП промышленной частоты, создаваемого системами передачи электроэнергии, осуществляется путем установления СЗЗ для линий электропередачи. Вдоль трассы высоковольтных линий электропередач с горизонтальным расположением проводов и без средств снижения напряженности электрического поля по обе стороны от нее на следующих расстояниях от проекции на землю крайних фазных проводов в направлении, перпендикулярном к высоковольтной линии:

330 кВ – 20 м

500 кВ – 30 м

750 кВ – 40 м

1150 кВ – 55 м (СанПиН 2.2.1/2.1.1.1200-03 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов, СанПиН 2971-84 защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты).

Защита временем – применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимых уровней (ПДУ). В действующих санитарных нормах ПДУ предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения. ПДУ ЭМИ регламентируются:

· ГОСТ 12.1.002-84 ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах

· ГОСТ 12.1.045 – 84 ССБТ. Электростатические поля. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах

· ГОСТ 12.1.006-84 ССБТ. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля

· МУК 4.3.044-96 Определение уровней электромагнитного поля, границ санитарно-защитной зоны и зон ограничения застройки в местах размещения передающих средств радиовещания и радиосвязи кило-, гекто и дециметрового диапазонов.

Расчет допустимого времени пребывания (Т) персонала в ЭМП промышленной частоты при напряженности от 5 до 20 кВ/м определяют по формуле:

6.13

где Е – напряженность электрического поля в контролируемой зоне, кВ/м.

Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м (ГОСТ12.1.002-84 ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах. М.: Изд-во стандартов, 1984). При напряженности ЭП от 20 до 25 кВ/м допустимое время пребывания составляет 10 мин. Пребывание в ЭП с напряженностью более 25 кВ/м без средств защиты не допускается. Если персонал в течение рабочего дня вынужден находится в зонах с различной напряженностью, то время его безопасного пребывания определяется по формуле:

6.14

где Тпр – приведенное время, эквивалентное биологическому эффекту пребывания в ЭП нижней границы нормируемой напряженности, ч;

tЕ1, tЕ2, tЕn – время пребывания в контролируемых зонах с напряженностями Е1 , Е2, Еn, ч;

ТЕ1, ТЕ2, ТЕn – допустимое время пребывание для соответствующих зон, ч.

Отметим, что приведенное время не должно превышать 8 ч.

Контроль за источниками ЭМИ РЧ осуществляют в соответствии с СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях». Оценку воздействия ЭМИ РЧ (60 кГц – 300 ГГц) осуществляют по энергетической экспозиции (ЭЭ), которая определяется интенсивностью ЭМИ РЧ и временем его воздействия на человека.

Рабочие места по обслуживанию радиотехнических и электронных устройств ВЧ и УВЧ находятся в ближней зоне и на оператора оказывают воздействие как электрическая, так и магнитная составляющая поля. Расчет напряженности поля в зоне излучения для электрической составляющей может производиться по формуле Шулейкина-Вандер-Поля:

6.15

где E – напряженность электрической составляющей ЭМП, В/м

P – мощность передатчика, Вт

Ga – коэффициент усиления антенны

F – множитель ослабления для потерь электромагнитной энергии в почве, который зависит от параметров почвы, длины волны и расстояние от антенны до точки измерения.

Предельно допустимый уровень ЭМП для средств связи и телевизионного вещания определяется по формуле:

6.16

Епду – значение предельно допустимого уровня напряженности электрического поля, В/м;

f – частота, МГц.

В диапазоне частот 300 МГц – 300 ГГц (СВЧ) нормируется плотность потока энергии Ппд и энергетическая нагрузка на человека за рабочий день Эпд.. Значение плотности потока энергии не должно превышать 10 Вт/м2, даже при кратковременном нахождении людей в данной зоне, т.е. при плотности потока энергии больше 10 Вт/м2 нахождение людей без средств защиты запрещается. В случае, если плотность потока меньше указанной величины, то можно рассчитать допустимое время пд) нахождения людей в этой зоне:

6.17

 

где Эпд – нормативная величина энергетической нагрузки за рабочий день, Вт·ч/м2;

П – значение плотности потока энергии ЭМП в зоне нахождения человека, при равномерном распределении электромагнитного поля в пространстве, Вт/м2

Для уменьшения воздействия ЭМП радиочастот эффективно применение следующих мер:

- уменьшение напряженности и плотности потока энергии ЭМП путем согласования нагрузок и поглотителей мощности;

- экранирование рабочих мест;

- удаление рабочего места от источника ЭМП (дистанционное управление);

- рациональное размещение в рабочем помещении оборудования, излучающего электромагнитную энергию;

- установление рациональных режимов работы оборудования и обслуживающего персонала;

- применение предупреждающей сигнализации (световой, звуковой, цветовой).

Защита от ЭМП радиочастотного диапазонаосуществляется использованием коллективных и индивидуальных средств защиты, изготавливаемых из радиотражающих (ч.в. металлические сетки, их недостаток – создают отраженные волны, способные усилить облучение человека) и радиопоглощающих материалов (табл. 6.2).

 

Таблица 6.2 – Характеристики некоторых радиопоглощающих материалов

Материал Тип марки Диапазон поглощенных волн, см Коэффициент отражения по мощности, % Ослабление проходящей мощности
Резиновые коврики В2Ф-2 0.8-4 1-2 98-99
Магнитодиэлектрические пластины ХВ-0.8 0.8 1-2 98-99
Поглощающие покрытия на основе поролона «Болото» 0.8-100 1-2 98-99
Ферритовые пластины СВЧ -0.68 15-200 3-4 96-97

Несмотря на то, что поглощающие материалы более надежны, чем отражающие, их применение ограничивается высокой стоимостью и узостью спектра поглощения.

Т.к. радиоизлучения могут проникать в помещение, где находятся люди через оконные и дверные проемы. Для их экранирования, застекления потолочных фонарей применяется металлизированное стекло. Экранирующие свойства такому стеклу придает тонкая прозрачная пленка оксида олова или пленка металлов (меди, никеля и их сочетаний). Нанесенная на одну сторону стекла она ослабляет интенсивность излучения в диапазоне 0.8-150 см на 30 дБ (т.е. в 1000 раз). При нанесении такой пленки на две стороны стекла, поглощающая способность возрастает до 40 дБ, т.е в 10 000 раз.

Для защиты населения от воздействия от ЭМП в строительных конструкциях в качестве защитных экранов применяется металлическая сетка или любое проводящее покрытие. Чаще всего достаточно использование заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой. В целом, радиоэкранирующими свойствами обладают практически все строительные материалы.

Если ослабление ЭМП строительными конструкциями не достаточно, то в помещении должны быть экранированы стены, потолок, оконные и дверные проемы, вентиляционная система. Монтаж экранов производится прикреплением стальных или дюралевых листов к поверхностям помещения.

Инженерно-технические мероприятия по защите от ЭМП РЧ основываются на применении экранирования ЭМП непосредственно в местах пребывания человека. Обычно применяют 2 вида экранирования:

1) экранирование источников ЭМП от людей;

2) экранирование людей от источников ЭМП.

В диапазонах радиочастот определяющей оценкой материала для ЭМИ экранирования является произведение проводимости на его магнитную проницаемость σ × μ. Здесь главную роль играет поверхностный эффект, т.к. токи, протекающие в глубинных слоях толщи экрана значительно меньше поверхностных. Поверхностный эффект характеризуется глубиной проникновения δ:

6.18

где δ – глубина проникновения, м

μ – магнитная проницаемость материала (Гн/м) (табл. 4)

σ – удельная проводимость (См/м)

ω – круговая частота (), Гц

Наибольшая эффективность защиты от ЭМП достигается локализацией ЭМП радиотехнического устройства с помощью корпуса или при помощи экрана. Обычно проектируют защиту от магнитного, электрического и электромагнитного полей. В большинстве случаев с двух сторон от экрана находится одна и та же диэлектрическая среда – воздух (рис. 6.11).

Рисунок 6.11 – Прохождение электромагнитной волны сквозь плоский экран

Рабочие места по обслуживанию СВЧ – аппаратуры практически всегда находятся в дальней зоне и воздействие ЭМП оценивается плотностью потока энергии. В области СВЧ (109 – 1010 Гц) длина волны соизмерима с диаметром экрана и эффективность экранирования носит колебательный характер.

Защитные свойства экранов основаны на эффекте ослабления напряженности и искажения электрического поля в пространстве вблизи заземленного металлического предмета. Эффективность экранирования определяется:

а) структурой ЭМП (магнитные, электрические, плоская волна, поперечные волны ТЕ и т.д.), зависящей от конфигурации и расположения источника излучения;

б) конструкцией экрана:

1. конфигурацией (плоский, круговой, цилиндрический, рис.6.12);

Рисунок 6.12 – Конструкции экранов

 

2. толщиной (толстостенные h>0.1D и тонкостенные h < 0.1D, где D – наибольшее расстояние между точками оболочки);

3. степенью герметичности (герметичные и негерметичные, т.е. имеющие отверстия в результате нарушения технологического процесса производства или несовершенства самой конструкции);

4. материалом (немагнитные – медь, алюминий, свинец и т.д. и магнитные).

В качестве экранов обычно применяют металлические листы, которые обеспечивают быстрое затухание поля в материале, однако часто это экономически не выгодно. Поэтому были разработаны следующие нематериалоемкие виды защиты от ЭМП:

- проволочные сетки

- фольговые материалы из диамагнитных материалов: алюминия, латуни, цинка

- токопроводящие краски – создают на основе пленкообразующего материала с добавлением проводящих составляющих (коллоидное серебро, графит, сажа, порошки меди, алюминия), пластификатора, отвердителя

- материалы с металлизированной поверхностью

- радиопоглощающие материалы изготавливают в виде эластичных и жестких пенопластов, тонких листов, рыхлой сыпучей массы, керамико-пластические композиции

- многослойные материалы (экраны состоят из чередующихся немагнитных или магнитных слоев; на границе слоев осуществляется многократное отражение волн, что обусловливает высокую эффективность экранирования)

- перфорированные материалы используют для экранирования каналов

- сотовые решетки для экранирования в диапазоне до 35 ГГц (рис. 6.13).

Рисунок 6.13 – Сотовые решетки, применяемые для экранирования ЭМП в частотных диапазонах: а) до 1 ГГц; б) до 10 ГГц; в) до 35 ГГц.

 

Методика расчета экранирующего устройства заключается в оценке эффективности применения материалов и конструкций. Исходными данными для проведения расчета являются:

- геометрические размеры экрана и технологических проемов,

- электрические и магнитные характеристики применяемого материала,
длина волны излучения,

- напряженность поля в рабочей зоне,

- длительность пребывания человека в ЭМП.

Необходимые формулы для оценки эффективности различных видов технических средств для защиты от электромагнитных излучений приведены в «Методических указаниях к практическим работам». Приведем упрощённый порядок оценки эффективности средств защиты.

Алгоритм оценки эффективности сплошного экрана:

1. Определяем, в какой зоне находится рабочее место и уточняем формулу расчета эффективности экрана в зависимости от преобладающего воздействия составных электромагнитного поля.

2. Рассчитываем глубину проникновения ЭМП в материал экрана.

3. Вычисляем эквивалентный радиус экрана.

4. Рассчитываем волновое сопротивление.

5. Определяем эффективность экранирования.

Алгоритм принятия решения о виде инженерной защиты оператора

1. Определяем предельно допустимое значение плотности потока энергии в заданном диапазоне частот.

2. Рассчитываем радиус опасной зоны.

3. Вычисляем плотность потока энергии в месте нахождения оператора.

4. Определяем требуемую эффективность экранирования.

5. Осуществляем подбор мероприятий и средств в зависимости от требуемой эффективности.

Алгоритм определения размеров волновода технических отверстий в экране заданной эффективности

1. Определяем длину волны излучения.

2. Определяем снижение ЭМП в волноводе заданных размеров.

3. Определяем необходимую длину волновода (отношение необходимого снижения к фактическому). Если это отношение больше 1, то использовать данную конструкцию не получится. Поэтому может быть принято решение об использовании фильтра типа «сотовых решеток».

4. Принимаем размер ячеек.

5. Определяем количество ячеек.

6. Рассчитываем снижение плотности потока энергии на 1 м длины ячейки.

7. Определяем длину волновода «сотовая решетка».

К индивидуальным средствам защиты от ЭМИ радичастотного, сверхвысокочастотного излучения и излучений промышленной частоты относятся средства, указанные в таблице 6.3.

Таблица 6.3 – Специальные средства защиты от действия ЭМИ

Средства защиты Диапазон ЭМИ
РЧ СВЧ ПЧ
Одежда - Радиозащитные костюмы, комбинезоны, халаты, фартуки, куртки из х/б ткани с микропроводом Костюмы, комбинезоны из тканевого волокна в сочетании с экранирующим проводящим слоем с удельным поверхностным сопротивлением не более 10 кОм
Обувь - Бахилы из х/б ткани с микропроводом Токопроводящие ботинки, полуботинки; Сапоги, полусапоги, галоши резиновые повышенной электропроводимости
Средства защиты рук - Рукавицы из х/б ткани с микропроводом Перчатки из электропроводящий ткани
Средства защиты головы, лица, глаз - Очки защитные закрытые с прямой вентиляцией, шлемы, капюшоны, маски из радиоотражающих матреиалов Металлические или пластмассовые металлизированные каски; шапки-ушанки с прокладкой из токопроводящей ткани
Инструменты, приспособле-ния Дистанционное управление Дистанционное управление Индивидуальные съёмные экраны
Индиви- дуальное заземление + + +

Снижение интенсивности облучения ультрафиолетовым излучением (УФИ) и защита от его воздействия достигается:

- защитой «расстоянием» - удаление обслуживающего персонала от источников УФИ на расстояние, определяемое только экспериментально в зависимости от условий работы, состава производственной атмосферы, вида источника излучения, отражающих свойств конструкций и оборудования и т.д.;

- экранированием источников излучения светофильтрами;

- экранированием рабочих мест ширмами, щитками;

- средствами индивидуальной защиты – спецодежды, рукавиц, фартуков из специальных тканей, щитков со светофильтрами;

- специальной окраской помещений – краской светлых тонов с добавлением оксида цинка;

- рациональным размещением рабочих мест.

Особым видом электромагнитных излучений является лазерное излучение.

Основными техническими характеристиками лазеров являются: длина волны, мкм; интенсивность излучения лазеров, Вт/см2; энергетическая экспозиция, Дж/см2; длительность импульса, с; частота повторения импульсов, Гц.

В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала. Выделяют 4 класса лазеров:

1) безопасные – выходное излучение не опасно для глаз;

2) малоопасные – опасно для глаз прямое или зеркально отражённое излучение;

3) среднеопасные – опасно для глаз прямое, зеркально и диффузно отражённое излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отражённое излучение;

4) высокоопасные – опасно для кожи диффузно отражённое излучение на расстоянии 10 см от отражающей поверхности.

Использование лазеров в технологических процессах может сопровождаться действием ряда опасных и вредных факторов (табл. 6.4, 6.5).

 

Таблица 6.4 – Вредные и опасные факторы, возникающие при работе лазеров

Факторы Класс опасности лазера
       
Лазерное излучение - прямое, зеркально отраженное - диффузно отраженное   - -   + -   + +   + +
Повышенная напряженность электрического поля - (+) + + +
Повышенная запыленность и загазованность воздуха - - - (+) +
Повышенный уровень УФ-радиации - - - (+) +
Повышенная яркость света - - - (+) +
Повышенные уровни шума и вибрации - - - (+) +
Повышенный уровень ионизирующих излучений - - - - (+)
Повышенный уровень ВЧ и СВЧ диапазона - - - - (+)
Повышенный уровень инфракрасного излучения - - - (+) - (+)
Повышенная температура поверхностей оборудования - - - (+) - (+)
Обозначения: + имеет место всегда: - отсутствует; - (+) – наличие зависит от конкретных технических характеристик лазера и условий его эксплуатации

 

Таблица 6.5 – Краткая характеристика источников вредных и опасных факторов при работе лазеров

  Производственный фактор Источник (причина) возникновения
При работе самой лазерной установки Прямое лазерное излучение Лазер (активное тело)
Импульсные световые вспышки Импульсные лампы накачки
УФ-излучение Кварцевые газоразрядные трубки и кюветы
Озон и оксиды азота Ионизация воздуха при разрядке импульсных ламп накачки
Шум Работа вспомогательных элементов лазерной установки
Низкоэнергетическое рентгеновское излучение Рабочее напряжение лазера свыше 10 кВ
Электромагнитные поля радиочастот ВЧ и УВЧ процесс накачки
Активные и токсичные жидкости Активная среда, охлаждающие жидкости
При взаимодействии излучения с обрабатываемой поверхностью Диффузно и зеркально отраженное лазерное излучение Взаимодействие лазерного луча с элементами по ходу луча
Рассеянное лазерное излучение Взаимодействие лазерного луча с неоднородными средами
Световые вспышки Излучение пламенного факела
Импульсный шум Звуковые импульсы в результате взаимодействия импульсного лазерного луча с обрабатываемым материалом
Загрязнение воздушной среды аэрозолями и газами Продукты деструкции обрабатываемых поверхностей
Электрические поля высокой интенсивности, высокотемпературная плазма, являющаяся источником рентгеновского и нейтронного излучения Взаимодействие особо мощного лазера с обрабатываемым веществом

 

Наиболее значимыми факторами являются: диффузно отраженное лазерное излучение, импульсный шум и загрязнение воздуха рабочей зоны веществами, образующими при разрушении и испарении обрабатываемого материала. При эксплуатации лазеров в закрытых помещениях на персонал действуют рассеянное и отражённое излучения; в условиях открытого пространства возникает реальная опасность воздействия прямых лучей. Органами-мишенями для лазерного излучения являются кожа и глаза. Т.к. наибольшую опасность при работе лазера представляет отраженное излучение, следовательно, для обеспечения безопасности работать с лазерами можно только в помещении, внутренние поверхности которого должны быть матовыми и обеспечивать максимальное рассеяние излучения. Для окраски внутренних поверхностей помещений используют клеевые краски на основе мела.

В зависимости от длины волны снижение опасности лазерного излучения обеспечивают: ослабителями излучения (светофильтрами); временем воздействия, расстоянием и фоновой освещенностью роговицы глаза (табл. 6.6).

 

Таблица 6.6 – Средства защиты от лазерного излучения

Средства защиты Класс опасности лазера Примечания
       
Оградительные устройства (кожухи, экраны) - -(+) + + Должны снижать до безопасных значений
Дистанционное управление - - + + Применять по возможности везде
Устройство сигнализации - - + + Для лазеров видимого диапазона
- -(+) + + Для лазеров УФ-диапазона
- - - + Для лазеров ИК- диапазона
Маркировака знаком лазерной опасности - + + + Лазеры, лазерные установки, зона прохождения луча, граница лазерно опасной зоны
Кодовый замок - - + + На дверях помещений, на пульте управления
Защитные очки, снижающие уровень диффузного излучения на роговице глаза до ПДУ - + + + При времени воздействия больше 0.25 с
Защитные запоры оградительного устройства или его частей - + + + Необходимы, когда при снятии оградительного устройства или его частей возможно воздействие излучения больше ПДУ
Защитная одежда - - - + При соответствующей опасности
Юстировочные очки (снижающие уровень коллимированного излучения на роговице глаза до ПДУ) - + + + Ограниченно – при выполнении наладки, ремонтно-профилактических работ

 

Гигиеническое нормирование лазерного излучения основано на критериях биологического действия, обусловленного областью электромагнитного спектра. В основу установления ПДУ положены минимальные пороговые повреждения в облучаемых тканях (сетчатке, роговице, коже). Нормируемыми параметрами лазерного излучения являются: энергетическая экспозиция и облученность, устанавливаемых в соответствии с СН 5804-91 «Санитарные нормы и правила устройства и эксплуатации лазера» и ГОСТ 12.1.040-83 «Лазерная безопасность. Общие положения».

Для обеспечения лазерной безопасности любая лазерная установка должна быть максимально экранирована устройствами из непрозрачных теплостойких материалов (рис. 6.14):

- лазерный луч необходимо передавать к мишени по волноводу или по огражденному пространству;

- линзы, призмы и другие элементы с твёрдой зеркальной поверхностью предметы на пути луча должны снабжаться блендами;

- в конце луча устанавливают диафрагмы, предупреждающие отражение от мишени в стороны на большие расстояния.

Рисунок 6.14 – Классификация оградительных устройств защиты от лазерного излучения

Все работы с радионуклидами правила подразделяют на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками. Закрытыми источниками ионизирующих излучений называются лю­бые источники, устройство которых исключает попадание радиоактив­ных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Обеспечение радиационной безопасности требует комплекса мно­гообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Главной опасностью закрытых источников ионизирующих излуче­ний является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов рас­пространения ионизирующих излучений и характера их взаимодейст­вия с веществом. Главные из них следующие:

1. Доза внешнего облучения пропорциональна интенсивности из­лучения времени действия.

2. Интенсивность излучения от точечного источника пропорцио­нальна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорционально квадрату расстояния.

3. Интенсивность излучения может быть уменьшена с помощью экранов.

Из этих закономерностей вытекают основные принци­пы обеспечения радиационной безопасности:

- уменьшение мощности источников до минимальных величин (защита количеством);

- сокращение времени работы с источниками (защита временем);

- увеличение расстояния от источника до работающих (за­щита расстоянием);

- экранирование источников излучения материа­лами, поглощающими ионизирующие излучения (защита экранами).

Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е. пропорциональ­но сокращает мощность излучения. Однако требования техноло­гического процесса часто не позволяют сократить количество радио­активного вещества в источнике, что ограничивает на практике при­менение этого метода защиты.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

Защита расстоянием – достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и моле­кулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами наиболее эффективный способ защиты от излу­чений. В целом все коллективные средства защиты от ионизирующих излучений(рис. 6.15) должны обладать следующими свойствами:

- устойчивостью к механическим, химическим, температурным и атмосферным воздействиям;

- обладать стойкостью по отношению к применяемым веществам, реактивам, кислым и щелочным растворам;

- иметь гладкую поверхность и быть влагостойким и слабо сорбирующим покрытием, которое способно облегчить удаление радиоактивных загрязнений;

По своему назначению защитные экраны условно разделяются на пять групп:

1. Защитные экраны-контейнеры, в которые помещаются радио­активные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

2. Защитные экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радио­активного препарата в рабочем положении или при включении высо­кого (или ускоряющего) напряжения на источнике ионизирующей радиации.

3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

4. Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для защиты поме­щений, в которых постоянно находится персонал, и прилегающей территории.

5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

Применение защитных экранов основано на свойстве материалов и веществ поглощать излучения. Толщина защитных экранов рассчитывается в зависимости от длины пробега частиц и плотности вещества. Для сооружения стационарных средств защиты (стен, перекрытий и т.д.) используют различные материалы (бетон, баритобетон, кирпич), при выборе которых наряду с физическими свойствами необходимо учитывать стоимость материала, его долговечность, габариты, технологию изготовления. В передвижных экранах, в основном, используют свинец, сталь, чугун (табл. 6.7).


 

Рисунок 6.15 – Классификация средств защиты от ионизирующих излучений (ГОСТ 12.4.120-83)


Таблица 6.7 – Вещества, применяемых для защиты от ионизирующих излучений

Вид материала Плотность, г/см3 Область применения Форма применения
Свинец 11.3 Для защиты от гамма-излучения В виде листов и блоков
Свинцовое стекло 3.4 – 4.6 При рентгенотелевизионном контроле качества В виде листов при толщине 15 мм эквивалентно 2.5 мм листовому свинцу
Железо 7.8 В качестве конструктивных материалов высокой прочности В виде листов и блоков
Вольфрам 16.5 – 19.3 Для защиты радиационных головок гамма дефектоскопа В виде порошка, спеченного с медью и никелем при высокой температуре
Барит   В качестве штукатурки или наполнителя для бетона (баритобетон) В виде порошка
Бетон 2.1 – 2.4 Для создания сооружений В жидком виде

 

Для снижения уровня излучения на рабочем месте до допустимой величины применяют защитные экраны из различных материалов. Толщина экрана зависит от:

- характеристики излучения (вид и энергия излучения);

- свойств защитного материала;

- необходимой кратности ослабления излучения k, показывающей, во сколько раз следует уменьшить мощность экспозиционной дозы излучения X, чтобы получить нормативные значения Xн.:

4.5.2.19

На основе расчетов определяются вид и размеры защитного сооружения. Как показывает практика, для защиты от рентгеновских и γ – излучений используют экраны из свинца, вольфрама, чугуна. Защита от нейтронного излучения обеспечивается материалами, которые хорошо ослабляют быстрые нейтроны, т.е. вещества которые содержат водород, например, вода, парафин. Для защиты от заряженных α и β частиц экраны должны иметь толщину больше, чем максимальная длина пробега данного излучения в материале экрана. 10-сантиметровый слой воздуха, фольга, одежда полностью экранируют α – излучения, а для защиты β – излучений достаточны экраны на стёклах, фольги и плекисглаза, толщиной в мм.

Для индивидуальной защиты человека используют специальную одежду, рукавицы, обувь и многообразные средства защиты органов дыхания (респираторы, противогазы).

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 5924; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.