КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Потенциальная энергия деформации
Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях. Одновременно с этим в упругом теле накапливается потенциальная энергия его деформирования U. При действии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде: А = U + K. (3.21) При действии статических нагрузок К = 0, следовательно, А = U. (3.22) Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружинах часовых механизмов, в амортизирующих рессорах и др. В случае простого растяжения (сжатия) для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи. На рис. 3.4, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку D l, ниже показан график изменения величины удлинения стержня D l в зависимости от силы Р (рис. 3.4, б). В соответствии с законом Гука этот график носит линейный характер.
Пусть некоторому значению силы Р соответствует удлинение стержня D l. Дадим некоторое приращение силе D Р - соответствующее приращение удлинения составит d (D l). Тогда элементарная работа на этом приращении удлинения составит: dA = (P + d P)× d (D l) = P × d (D l) + d P × d (D l), (3.23) вторым слагаемым, в силу его малости, можно пренебречь, и тогда dA = P × d (D l). (3.24) Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка - перемещение”, работа внешней силы Р на перемещении D l будет равна площади треугольника ОСВ (рис. 3.4), т.е. А = 0,5 Р ×D l. (3.25) В свою очередь, когда напряжения s и деформации e распределены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде: . (3.26) Поскольку, в данном случае имеем, что V = F l, P = s F иs = Е e,то , (3.27) т.е. подтверждена справедливость (2.9). С учетом (2.5) для однородного стержня с постоянным поперечным сечением и при Р = const из (2.14) получим: . (3.28)
Дата добавления: 2014-01-20; Просмотров: 320; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |