КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Разложение функций в тригонометрический ряд Фурье
Исходные данные:
(Рис. 1)
Функция периодическая с периодом .(f(x+T)=f(x)) Функция имеет на промежутке конечное число точек разрыва первого рода. Сумма ряда в точках функции сходится к значению самой функции, а в точках разрыва к величине , где -точки разрыва.
Рис. 1
Производная также непрерывна везде, кроме конечного числа точек разрыва первого рода. Вывод: функция удовлетворяет условию разложения в ряд Фурье.
1) F(x) - кусочно-непрерывна на интервале . 2) F(x) - кусочно-монотонна.
Так как отсутствует симметрия относительно OY, а также центральная симметрия - то рассматриваемая функция произвольна.
Представление функции рядом Фурье.
Из разложения видим, что при n нечетном принимает значения равные 0, и дополнительно надо рассмотреть случай когда n=1. Поэтому формулу для можно записать в виде:
(так как ).
Отдельно рассмотрим случай когда n=1:
.
Подставим найденные коэффициенты в получим:
и вообще .
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника ,
2-ая гармоника ,
3-ая гармоника ,
4-ая гармоника ,
5-ая гармоника ,
и общий график F(x), сумма выше перечисленных гармоник. и сами гармоники.
Запишем комплексную форму полученного ряда
Для рассматриваемого ряда получаем коэффициенты (см. теорию)
,
но при не существует, поэтому рассмотрим случай когда n =+1:
(т.к. см. разложение выше)
и случай когда n =-1:
(т.к. )
И вообще комплексная форма:
или
или
Разложение четной функции в ряд
Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до смотри рис.2
Рис.2
поэтому разложение по косинусу имеет вид:
Из разложения видим что при n =2 дробь теряет смысл поэтому отдельно рассмотрим разложения первого и второго коэффициента суммы:
На основе данного разложения запишем функцию в виде ряда:
и вообще .
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника
2-ая гармоника
3-я гармоника
4-ая гармоника
5-ая гармоника
А теперь рассмотрим сумму этих гармоник F(x):
Комплексная форма ряда по косинусам
Для рассматриваемого ряда получаем коэффициенты (см. гл.1) , но при не существует, поэтому рассмотрим случай когда n =+2: (т.к. см. разложение выше) и случай когда n =-2:
(т.к. ) И вообще комплексная форма:
или
или
Разложение нечетной функции в ряд
Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до смотри рис.3
Рис.3
поэтому разложение по синусам имеет вид:
Из данного разложения видно, что при n =2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.
При n =1: ,
и при n =2:
Учитывая данные коэффициенты имеем разложения в виде
и вообще
Найдем первые пять гармоник для данного разложения: 1-ая гармоника
2-ая гармоника
3-ая гармоника
4-ая гармоника
5-ая гармоника
И просуммировав выше перечисленные гармоники получим график функции F (x)
Вывод: На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.
Комплексная форма ряда по синусам
Основываясь на теорию (см. гл.1) для ряда получаем:
, (т.к. )
тогда комплексный ряд имеет вид:
ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ
Проверка условий представимости
Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до как равную нулю(рис.4).
Рис.4
а) f(x)-определенна на R; б) f(x) возрастает на , f(x) убывает на - кусочнo-монотонна. f(x) = const на и .
< .
Интеграл Фурье
В соответствии с теорией (см. гл. 1) найдем a (u) и b (u):
;
.
И в конечном варианте интеграл Фурье будет выглядеть так:
Интеграл Фурье в комплексной форме
Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:
,
,
а теперь получим интеграл в комплексной форме:
. ГЛАВА 4 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ПОЛИНОМОМ ЛЕЖАНДРА
Основные сведения
Функцию можно разложить в ортонормированной системе пространства X=[-1,1], причем полиномы получим, если проинтегрируем выражение:
Соответственно получим для n=0,1,2,3,4,5,...:
..........
Для представления функции полиномом Лежандра необходимо разложить ее в ряд:
,
где и разлагаемая функция должна быть представлена на отрезке от -1 до 1.
Преобразование функции
Наша первоначальная функция имеет вид (см. рис. 1):
т. к. она расположена на промежутке от 0 до необходимо произвести замену, которая поместит функцию на промежуток от -1 до 1. Замена:
и тогда F(t) примет вид
или
Вычисление коэффициентов ряда
Исходя из выше изложенной формулы для коэффициентов находим:
Далее вычисление коэффициентов осложнено, поэтому произведем вычисление на компьютере в системе MathCad и за одно проверим уже найденные:
Рассмотрим процесс стремления суммы полинома прибавляя поочередно - слагаемое:
А теперь рассмотрим график суммы пяти полиномов F (t) на промежутки от -1 до 0 (рис.5):
Рис. 5
т.к. очевидно, что на промежутке от 0 до 1 будет нуль.
Вывод: На основе расчетов гл.2 и гл.4 можно заключить, что наиболее быстрое стремление из данных разложений к заданной функции достигается при разложении функции в ряд.
ГЛАВА 5 ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ
Прямое преобразование
Для того, чтобы произвести прямое преобразование, необходимо задать данную функцию (гл. 1, рис. 1) таблично. Поэтому разбиваем отрезок от 0 до на N =8 частей, так чтобы приращение: В нашем случае , и значения функции в k -ых точках будет:
для нашего случая (т.к. a =0). Составим табличную функцию:
Табл. 1
Прямым дискретным преобразованием Фурье вектора называется . Поэтому найдем:
, n =0,1,..., N -1
Сумму находим только до 3 слагаемого, т.к. очевидно, что от 4 до 7 к сумме суммируется 0 (т.к. значения функции из таблицы равны нулю).
Составим таблицу по прямому дискретному преобразованию:
зная, , где
, где
Табл. 2 Амплитудный спектр
Обратное преобразование
Обратимся к теории гл.1. Обратное преобразование- есть функция:
В нашем случаи это:
А теперь найдем модули и составим таблицу по обратным дискретным преобразованиям:
Табл. 3
Из приведенной таблицы видно, что приближенно равно . Построим графики используя табл.3, где - это F (k), а - это f (k) рис. 6:
Рис. 6
Вывод: На основе проделанных расчетов можно заключить, что заданная функция представима в виде тригонометрического ряда Фурье, а также интеграла Фурье, полинома Лежандра и дискретных преобразований Фурье. О последнем можно сказать, что спектр (рис. 6) прямого и обратного преобразований совпадают с рассматриваемой функцией и расчеты проведены правильно.
Дата добавления: 2014-01-20; Просмотров: 2350; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |