Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Описание элементарного перцептрона




Поступление сигналов с сенсорного поля в решающие блоки элементарного перцептрона в его физическом воплощении.

Элементарный перцептрон состоит из элементов 3-х типов: S-элементов, A-элементов и одного R-элемента. S-элементы это — слой рецепторов. Эти рецепторы соединены с A-элементами с помощью возбуждающих связей. Каждый рецептор может находиться в одном из двух состояний — покоя или возбуждения. A-элементы представляют собой сумматоры с порогом (то есть формальные нейроны). Это означает, что A-элемент возбуждается, если алгебраическая сумма возбуждений, приходящих к нему от рецепторов, превышает определённую величину — его порог. Сигналы от возбудившихся A-элементов передаются в сумматор R, причём сигнал от i-го ассоциативного элемента передаётся с коэффициентом wi.

А- или R-элементы (которые является пороговыми) подсчитывают некоторую линейную форму (как правило, сумму весовых коэффициентов) от своих входов и сравнивает её с заданным значением — порогом. Если у А-элемента n входов, то в нем должны быть заданы n весов w 1, w 2,..., wn и порог θ. Перцептрон выдаёт 1, если линейная форма от входов с коэффициентами wi превышает θ, иначе −1.

Логическая схема элементарного перцептрона. Веса S—A связей могут либо 1, либо 0. Веса A—R связей W могут быть любыми.

Система связей между рецепторами S- и A-элементами, так же как и пороги A-элементов выбираются некоторым случайным, но фиксированным образом, а обучение состоит лишь в изменении коэффициентов wi. Считаем, что мы хотим научить перцептрон разделять два класса объектов, и потребуем, чтобы при предъявлении объектов первого класса выход перцептрона был положителен, а при предъявлении объектов второго класса — отрицательным. Начальные коэффициенты wi полагаем равными нулю. Далее предъявляем обучающую выборку: объекты (например, круги либо квадраты) с указанием класса, к которым они принадлежат. Показываем перцептрону объект первого класса. При этом некоторые A-элементы возбудятся. Коэффициенты wi, соответствующие этим возбуждённым элементам, увеличиваем на 1. Затем предъявляем объект второго класса и коэффициенты wi тех A-элементов, которые возбудятся при этом показе, уменьшаем на 1. Этот процесс продолжим для всей обучающей выборки. В результате обучения сформируются значения весов связей wi.

После обучения перцептрон готов работать в режиме распознавания или обобщения. В этом режиме перцептрону предъявляются «не знакомые» перцептрону объекты, и перцептрон должен установить, к какому классу они принадлежат. Работа перцептрона состоит в следующем: при предъявлении объекта возбудившиеся A-элементы передают сигнал R-элементу, равный сумме соответствующих коэффициентов wi. Если эта сумма положительна, то принимается решение, что данный объект принадлежит к первому классу, а если она отрицательна — то второму.

 

Кибернетика «черного ящика»

 

В основе принцип, противоположный нейрокибернетике:

Не имеет значения, как устроено «мыслящее» устройство. Главное, чтобы на заданные входные воздействия оно реагировало также, как человеческий мозг.

Ученые этого направления поясняли, что человек не должен слепо следовать природе в своих научных и технологических поисках. Так, например, очевиден успех колеса, которого не существует в природе, или самолета, не машущего крыльями, как птица. К тому же пограничные науки о человеке не смогли внести существенного теоретического вклада, объясняющего хотя бы приблизительно, как протекают интеллектуальные процессы у человека, как устроена память и как человек познает окружающий мир.

Это направление ИИ было ориентированно на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 559; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.