Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перевод целых чисел из системы счисления с основанием S в десятичную систему счисления

Число, записанное в позиционной системе счисления с любым основанием, переводится в десятичную систему счисления по указанному выше правилу (1):

 

Если, например, 458 – число, записанное в восьмеричной системе счисления, то

458=4*81+5*8 0=4*8+5*1=32+5=3710

Число 2035 записано в пятеричной системе счисления, тогда

2035=2*52+0*51+3*50=2*25+0*5+3*1=50+0+3=5310

Меняется только основание системы счисления, алгоритм остается неизменным.

Основание позиционной системы счисления в ней самой всегда записывается как 10; например, в двоичной системе счисления 102 означает число 210, а в восьмеричной 108 означает число 810.

Чтобы легче осуществлять перевод из системы счисления по любому основанию в десятичную, следует для начала явно пронумеровать разряды исходного числа справа налево, начиная с 0 (см. рисунок 2).

 

<== предыдущая лекция | следующая лекция ==>
Римская система счисления | Двоичная система счисления
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 277; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.