Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Чем выше температура нагрева, тем более крупными окажутся рекристаллизованные зерна

Первичная рекристаллизация полностью снимает наклеп, созданный при пластической деформации; металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения. Свойства металла после рекристаллизации близки к свойствам отожженного металла.

Деформирование металлов подразделяют на холодное и горячее в зависимости от температуры. Холодное деформирование проводят ниже температуры рекристаллизации, металл наклепывается и сохраняет наклеп. Горячее деформирование проводят выше температуры рекристаллизации, когда получаемый наклеп снимается одновременно протекающей рекристаллизацией.

Если рекристаллизация не устраняет наклеп, то он сохраняется частично или полностью.

Пластичность и вязкость металлов и сплавов зависят от размера зерен. С уменьшением размера зерен вязкость улучшается. Размер зерен, образующихся в результате рекристаллизации, зависит в основном от степени пластической деформации и от температуры, при которой происходила рекристаллизация. Рис. 2.25 иллюстрирует зависимость размера рекристаллизованного зерна алюминия А7 от температуры отжига в течение 1 ч.

 

Рис. 2.25. Зависимость размера рекристаллизованного зерна d алюминия А7 от температуры отжига Тотж в течение 1 ч.

Увеличение выдержки при нагреве способствует росту зерен, но эффект значительно меньше, чем при повышении температуры нагрева. Зависимость размера зерен от степени деформации и температуры обычно демонстрируют при помощи диаграмм рекристаллизации (рис. 2.26).

Для конструкционных материалов общего назначения анизотропия свойств нежелательна. Рекристаллизованные сплавы, как правило, однородны по свойствам и анизотропии не обнаруживают. Однако при известных условиях в рекристаллизованном металле появляется предпочтительная ориентация зерен, которую называют текстурой рекристаллизации. Ее вид зависит от химического состава сплава, характера деформирования, природы и количества примесей, технологических факторов. Образование текстуры рекристаллизации имеет практическое значение для сплавов с особыми физическими свойствами, когда требуется улучшить то или иное свойство в определенном направлении изделия. Например, в листах трансформаторной стали образование текстуры дает возможность уменьшить потери на перемагничивание по определенным направлениям листа.

Рис. 2.26. Диаграммы рекристаллизации: а – зависимость размера зерна D рекристаллизованного металла от деформации (Dо – размер исходного зерна); б – диаграмма рекристаллизации технически чистого железа.

Рекристаллизация многофазных сплавов представляет собой более сложный процесс, в котором на зарождении и росте новых рекристаллизованных зерен сказываются различия свойств каждой фазы, характер структуры и объемные соотношения между фазами, а также состав сплава. Особое значение имеют размер частиц второй фазы и среднее расстояние между частицами. Чем ближе друг к другу расположены частицы второй фазы, тем труднее перемещаться границе нового зерна и тем сильнее тормозится рекристаллизация. Это проявляется в повышении температуры рекристаллизации и увеличении времени для завершения первичной рекристаллизации многофазного сплава по сравнению с однофазным сплавом – твердым раствором аналогичного химического состава. Близость частиц второй фазы обеспечивается при достаточно высоком их содержании в сплаве. Когда частиц мало и они далеко друг от друга, их роль в рекристаллизации незначительна. Мелкие частицы размерами приблизительно 0,1 мкм и меньше тормозят рекристаллизацию. Более крупные частицы размерами свыше 0,1–0,5 мкм тормозят рекристаллизацию, когда располагаются близко друг к другу, и ускоряют ее, когда расстояние между ними увеличено. В последнем случае сказывается влияние межфазной границы, на которой преимущественно зарождаются новые зерна.

Тормозящее влияние дисперсных частиц второй фазы на рекристаллизацию успешно используется в промышленных сплавах для увеличения предельных рабочих температур. Присутствие в сплавах элементов антирекристаллизаторов повышают температуру рекристаллизации и способствуют формированию нерекристаллизованной структуры изделий и полуфабрикатов.

Сверхпластичное состояние металла проявляется при горячем деформировании материалов с ультрамелким зерном (0,5–10 мкм). При низких скоростях деформирования металл течет равномерно, не упрочняясь, относительные удлинения достигают 10–15 %.

Огромные деформации в сверхпластичном состоянии складываются из зернограничного скольжения, дополненного направленным (под действием напряжений) диффузионным переносом атомов и обычным скольжением внутри зерен. Для того чтобы реализовать сверхпластичное состояние, требуется не только получить ультрамелкие зерна, но и сохранить эту структуру в течение всего периода деформирования при температуре выше 0,5Тпл (порядка нескольких десятков минут). В однофазных сплавах зерна твердого раствора успевают вырасти за это время так, что сверхпластичность теряется.

Промышленные сверхпластичные сплавы имеют двухфазную структуру (лучшее сочетание объемов обеих фаз 1:1; при этом максимальна поверхность межфазных границ) и поэтому сохраняют исходную мелкозернистость в течение всего срока изготовления изделий. К числу таких сплавов принадлежат различные эвтектические и эвтектоидные смеси и т.п.

Сверхпластичное состояние используют на практике для производства изделий весьма сложной формы при помощи пневматического формования листов или объемного прессования. Несмотря на медленность самого процесса формования и сравнительно высокие рабочие температуры, процесс выгоден, а в ряде случаев является единственным способом получения изделий, когда металл нужно без разрушения деформировать на 200–300 % и выше.

Контрольные вопросы и задания

1. Изобразите структуру металла после холодной деформации. Чем отличается текстура деформации от волокнистой структуры металлов и сплавов?

2. Как изменяется структура деформированных металлов при нагревах после деформации?

3. Изобразите структуру металла после холодной деформации и рекристаллизационного отжига.

4. Как изменяются свойства холоднодеформированного металла после нагрева?

 

<== предыдущая лекция | следующая лекция ==>
Структура и свойства металлов при нагреве после пластической деформации | Принципы записи и съема информации с носителей
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 393; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.