Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лазеры на красителях

ЖИДКОСТНЫЙ ЛАЗЕР

У лазера каждого типа есть свои достоинства и недостатки. В твердых веществах можно создать большую концентрацию излучающих атомов и, значит получить большую энергию с одного кубического сантиметр стержня. Но их трудно делать, они дороги и к тому же могут лопаться из-за перегрева во врем работы.

Газы очень однородны оптически, рассеяние света в них мало, поэтому размер газового лазера может быть весьма внушительным: длина 10 метров при диаметре 10—20 сантиметров для него н предел. Но такое увеличение размера вынужденная мера, необходима для того, чтобы компенсировать ничтожное количество активны атомов газа, находящегося в трубке лазера под давлением в сотые доли атмосферы. Прокачка газа несколько спасает дело, позволяя уменьшить размер излучателя. Но для того, чтобы гонять газ по замкнутому кругу, нужен насос, холодильник, различные фильт­ры... А в результате та же ЛТ-1 за­нимает площадь двадцать квад­ратных метров при высоте уста­новки около трех метров...

Жидкости объединяют в себе достоинства и твердых и газооб­разных лазерных материалов: плотность их всего в два-три раза ниже плотности твердых тел (а не в сотни тысяч раз, как плотность газов). Поэтому количество их атомов в единице объема пример­но одинаково. Значит, жидкост­ный лазер легко сделать таким же мощным, как лазер твердотель­ный. Оптическая однородность жидкостей не уступает однород­ности газов, а значит, позволяет использовать большие ее объемы. К тому же жидкость тоже можно прокачивать через рабочий объ­ем, непрерывно поддерживая ее низкую температуру и высокую активность ее атомов.

Наиболее широко распростра­нены

 

Называются они так потому, что их рабочая жидкость — ра­створ анилиновых красок (вроде тех, которыми кра­сят шерсть и хлопок) в воде, спир­те, кислоте и других растворите­лях. Жидкость налита в плоскую ванночку-кювету. Кювета, разу­меется, установлена между зерка­лами. Энергия молекулы краси­теля «накачивается» оптически, только вместо лампы-вспышки на первых порах использовались импульсные рубиновые лазеры, а позднее — лазеры газовые. Лазер-накачку внутрь жидкостного лазе­ра не встраивают, а помещают в сторонке, вводя его луч в кювету через окошко в корпусе. Сейчас, правда, удалось добиться генера­ции света и с импульсной лампой, но не на всех красителях.

Растворы могут излучать им­пульсы света различной длины волны-от ультрафиолета до ин­фракрасного света — и мощно­стью от сотен киловатт до не­скольких мегаватт, в зависимости от того, какой краситель налит в кювету.

Лазеры на красителях обла­дают интересной особенностью. Все лазеры излучают строго на одной длине волны. Это их свойство лежит в самой природе вынуж­денного излучения атомов, на котором основан весь лазерный эффект.

В больших и тяжелых молеку­лах органических красителей вы­нужденное излучение возникает сразу в широкой полосе длин волн. Чтобы добиться от лазера на красителях монохроматично­сти, на пути луча становится све­тофильтр. Это не просто окра­шенное стеклышко, какое, напри­мер, служит фильтром при фото­графировании. Он представляет собой набор стеклянных пластин, которые пропускают только свет одной длины волны. Меняя рас­стояние между пластинами, мож­но слегка изменить длину вол­ны лазерного излучения. Такой лазер называется перестраивае­мым. А для того, чтобы лазер мог генерировать свет в разных участках спектра — переходить, скажем, от синего к красному све­ту или от ультрафиолетового к зе­леному,—достаточно сменить кю­вету с рабочей жидкостью.

На­ряду с широкополосными жидкостными лазерами существуют и такие, у которых, наоборот, монохроматичность гораздо выше, чем у лазеров на твердом теле или на газе. И привела к созданию таких лазеров очень простая идея. Если существуют лазеры, где свет излучают атомы редкого эле­мента неодима, с солями которого сварена стеклянная масса, то по­чему бы эти соли не растворить и не залить их в кювету? Ширина полосы излучения такого лазера в сто раз уже, чем у твердотельного лазера на неодимовом стекле.

 


Гелий-неоновый лазер. Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.

Неон, в принципе, может генерировать лазерное изучение в результате более 130 различных переходов. Однако наиболее интенсивными являются линии с длиной волны 632,8 нм, 1,15 и 3,39 мкм. Волна 632,8 нм находится в видимой части спектра, а волны 1,15 и 3,39 мкм - в инфракрасной.

При пропускании тока через гелий-неоновую смесь газов электронным ударом атомы гелия возбуждаются до состояний 23S и 22S, которые являются метастабильными, поскольку переход в основное состояние из них запрещен квантово-механическими правилами отбора. При прохождении тока атомы накапливаются на этих уровнях. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно вследствие хорошего совпадения энергии соответствующих уровней. Вследствие этого на уровнях 3S и 2S неона образуется инверсная заселенность относительно уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере составляет 332 Па, а неона — 66 Па. Постоянное напряжение на трубке около 4 кВ. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое выходит лазерное излучение, — около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.

 

С02-лазер с замкнутым объемом. Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Используемый в CO2 - лазере переход дает излучение с длиной волны 10,6 мкм, т. е. лежит в инфракрасной области спектра. Пользуясь колебательными уровнями, можно несколько варьировать частоту излучения в пределах примерно от 9,2 до 10,8 мкм. Энергия молекулам CO2 передается от молекул азота N2, которые сами возбуждаются электронным ударом при прохождении тока через смесь.

 

N2 CO2

(001)

 

10,6 мкм

9,6 мкм

(100)

 

 

(020)

 

 

(010)

 

 

       
   

 


Рис. 5. Схема энергетических уровней в CO2-лазере

Возбужденное состояние молекулы азота N2 является метастабильным и отстоит от основного уровня на расстоянии 2318 см -1, что весьма близко к энергетическому уровню (001) молекулы CO2 (рис. 5). Ввиду метастабильности возбужденного состояния N2 при прохождении тока число возбужденных атомов накапливается. При столкновении N2 с CO2 происходит резонансная передача энергии возбуждения от N2 к CO2. Вследствие этого возникает инверсия заселенностей между уровнями (001), (100), (020) молекул CO2. Обычно для уменьшения заселенности уровня (100), который имеет большое время жизни, что ухудшает генерацию при переходе на этот уровень, добавляют гелий. В типичных условиях смесь газов в лазере состоит из гелия (1330 Па), азота (133 Па) и углекислого газа (133 Па).

При работе CO2 - лазера происходит распад молекул CO2 на СО и О, благодаря чему активная среда ослабляется. Далее СО распадается на С и О, а углерод осаждается на электродах и стенках трубки. Всё это ухудшает работу СO2-лазера. Чтобы преодолеть вредное действие этих факторов в закрытую систему добавляют пары воды, которые стимулируют реакцию

СО + О CO2.

Используются платиновые электроды, материал которых является катализатором для этой реакции. Для увеличения запаса активной среды резонатор соединяется с дополнительными емкостями, содержащими CO2, N2, Не, которые в необходимом количестве добавляются в объём резонатора для поддержания оптимальных условий работы лазера. Такой закрытый CO2-лазер, в состоянии работать в течение многих тысяч часов.

Проточный СО2-лазер. Важной модификацией является проточный СО2-лазер, в котором смесь газов CO2, N2, Не непрерывно прокачивается через резонатор. Такой лазер может генерировать непрерывное когерентное излучение мощностью свыше 50 Вт на метр длины своей активной среды.

 

       
 
   
 

 


Безызлучательные

переходы

 

 
 

 

 


2

 
 


Лазер 1,06 мкм

 

1

 


Рис. 6. Неодимовый лазер

Неодимовый лазер. На рис. 6 показана схема так называемого неодимового лазера. Название может ввести в заблуждение. Телом лазера является не металл неодим, а обычное стекло с примесью неодима. Ионы атомов неодима беспорядочно распределены среди атомов кремния и кислорода. Накачка производятся лампами-молниями. Лампы дают излучение в пределах длин волн от 0,5 до 0,9 мкм. Возникает широкая полоса возбужденных состояний. Совершенно условно она изображена пятью черточками. Атомы совершают безызлучательные переходы на верхний лазерный уровень. Каждый переход дает разную энергию, которая превращается в колебательную энергию всей «решетки» атомов.

Лазерное излучение, т.е. переход на пустой нижний уровень, помеченный цифрой 1, имеет длину волны 1,06 мкм.

Показанный пунктиром переход с уровня 1 на основной уровень «не работает». Энергия выделяется в виде некогерентного излучения.

Т-лазер. Во многих практических приложениях важную роль играет СO2-лазер, в котором рабочая смесь находится под атмосферным давлением и возбуждается поперечным электрическим полем (Т-лазер). Поскольку электроды расположены параллельно оси резонатора, для. получения больших значений напряженности электрического поля в резонаторе требуются сравнительно небольшие разности потенциалов между электродами, что дает возможность работать в импульсном режиме при атмосферном давлении, когда концентрация CO2 в резонаторе велика. Следовательно, удается получить большую мощность, достигающую обычно 10 МВт и больше в одном импульсе излучения продолжительностью менее 1 мкс. Частота повторения импульсов в таких лазерах составляет обычно несколько импульсов в минуту.

Газодинамические лазеры. Нагретая до высокой температуры (1000—2000 К) смесь CO2 и N2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.

Лазеры на красителях. Красители являются очень сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни в полосе спектра располагаются почти непрерывно. Вследствие внутримолекулярного взаимодействия молекула очень быстро (за времена порядка 10-11—10-12 с) переходит безызлучательно на нижний энергетический уровень каждой полосы. Поэтому после возбуждения молекул через очень короткий промежуток времени на нижнем уровне полосы Е1 сосредоточатся все возбужденные молекулы. Они далее имеют возможность совершить излучательный переход на любой из энергетических уровней нижней полосы. Таким образом, возможно излучение практически любой частоты в интервале, соответствующем ширине нулевой полосы. А это означает, что если молекулы красителя взять в качестве активного вещества для генерации лазерного излучения, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты генерируемого лазерного излучения. Поэтому на красителях создаются лазеры с перестраиваемой частотой генерации. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров,

Выделение частот генерации достигается тем, что порог генерации создается только для узкой области частот. Например, положения призмы и зеркала подбираются так, что в среду после отражения от зеркала благодаря дисперсии и разным углам преломления возвращаются лишь лучи с определенной длиной волны. Только для таких длин волн обеспечивается лазерная генерация. Вращая призму, можно обеспечить непрерывную перестройку частоты излучения лазера на красителях. Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.

<== предыдущая лекция | следующая лекция ==>
ПОЛУ­ПРОВОДНИКОВЫЙ ЛАЗЕР | Социализация и социальная педагогика
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 2181; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.