Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 6

Решим графически задачу ЛП, экономико-математическая модель которой составлена в примере 3.

;

(2.10)

Вначале построим многоугольник решений или ОДР задачи (рисунок 1). Для этого в системе координат на плоскости изобразим граничные прямые:

Затем определим, какую полуплоскость определяет соответствующее неравенство, подставив координаты какой-нибудь точки, например начала координат. Ограничения (2.10) означают, что ОДР лежит в I четверти системы координат . Соответствующие полуплоскости на рисунке показаны стрелками. Пересечение указанных полуплоскостей и определяет многоугольник решений данной задачи (ОДР).

Для того чтобы построить прямую , строим направляющий вектор , который перпендикулярен прямой Z. Прямая, проходящая через начало координат и перпендикулярная вектору , и будет прямая . Затем прямую перемещаем параллельно самой себе в направлении вектора N по многоугольнику решений (ОДР) (рисунок 1). Последняя точка соприкосновения прямой с ОДР и есть оптимальное решение.

 

Рисунок 1

 

Вектор указывает направление возрастания целевой функции Z. Оптимальное решение ЗЛП может достигаться лишь в точках, принадлежащих границе многоугольника решений. В нашем примере, как видно из рисунка 1, функция Z принимает максимальное значение в точке . Точка лежит на пересечении прямых и . Для определения ее координат необходимо решить систему уравнений:

Откуда . Это и есть оптимальный план задачи. Подставив значение и в целевую функцию Z, получаем

.

Таким образом, для того чтобы получить максимальную прибыль в размере 56 ден. ед., необходимо запланировать выпуск 8 ед. продукции вида П1 и 4 ед. продукции П2.

 

<== предыдущая лекция | следующая лекция ==>
Графический метод решения ЗЛП | Симплекс-метод решения ЗЛП
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.