КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предельные случаи теоремы Паскаля
Если одна из вершин шестивершинника перемещается по квадрике и совпадает с соседней вершиной, то их рассматривают как две вершины шестивершинника, и прямая, проходящая через эти две точки, будет отдельной стороной шестивершинника. Определение 9.4. Фигура которая получается при совпадении двух вершин (фактически она состоит из пяти точек и шести прямых) называется предельным шестивершинником. Пусть . Противоположные стороны:
Каждый предельный шестивершинник определяет конфигурацию Паскаля, причем каждая конфигурация предельного перехода может быть закреплена соответствующей теоремой. Теорема 9.5 (). Для того чтобы прямая касалась квадрики, определяемой данными пятью точками, необходимо и достаточно, чтобы для предельного шестивершинника, определенного данными точками и прямой, выполнялись требования теоремы Паскаля. Теорема 9.6 () Пусть четыре точки, из которых никакие три не лежат на одной прямой, и прямая проходящая через одну и только одну из них. Для того чтобы прямая касалась квадрики, определяемой данными четырьмя точками, необходимо и достаточно, чтобы для предельного шестивершинника, определенного данными точками и прямой, выполнялись требования теоремы Паскаля.
Теорема 9. 7. () Пусть четыре точки из которых никакие три не лежат на одной прямой, и прямая проходящая через одну и только одну из них. Для того чтобы прямая касалась квадрики, определяемой данными четырьмя точками, необходимо и достаточно, чтобы для предельного шестивершинника, определенного данными точками и прямой, выполнялись требования теоремы Паскаля.
Теорема 9.8. (). Пусть три точки, из которых никакие три не лежат на одной прямой, и прямая проходящая через одну и только одну из них. Для того чтобы прямая касалась квадрики, определяемой данными тремя точками, необходимо и достаточно, чтобы для предельного шестивершинника, определенного данными точками и прямой, выполнялись требования теоремы Паскаля.
Теорема 9.9 (Теорема Брианшона. Для того чтобы шесть прямых, среди которых нет трех принадлежащих одной точке, касались овальной квадрики необходимо и достаточно, чтобы три прямые соединяющие противоположные вершины шестивершинника, образованного данными прямыми, пересекались в одной точке называемой точкой Брианшона. В точку Брианшона при полярной корреляции переходит Паскалева ось (прямая, на которой лежат точки пересечения). Предельные случаи теоремы Брианшона получаются двумя способами: 1) они двойственны предельным случаям теоремы Паскаля; 2) их можно получить путём предельного перехода из самой теоремы Брианшона: смещают две касательные, и точка их пересечения совпадает с точкой касания или является точкой касания. I. II.
III. IV.
Теорема 9.10.(теорема Штейнера). Пусть даны два пучка с центрами О1 и О2 и установлено проективное соответствие не являющееся перспективным. Тогда множество точек пересечения соответственных прямых этих пучков является овальной линией второго порядка проходящей через точки О1 и О2. Следствие: Если f – соответствие указанное в теореме Штейнера, то образы прямой О1О2 при отображении являются касательными к овальной квадрике в точках О1 и О2. Теорема 9.11. (обратная теореме Штейнера). Дана овальная квадрика и на ней произвольные точки О1 и О2. Каждой прямой О1М пучка с центром О1 поставлена в соответствии прямая О2М пучка О2. Точка М – произвольная точка не совпадающая с О1 и О2. Касательной в точке О1 поставим в соответствии прямую О2О1, а касательной в точке О2 – прямую О1О2. Полученное соответствие является проективным, но не перспективным.
Теорема 7 (об образовании кривых второго порядка посредством проективного отображения одного пучка прямых на другой). Пусть на плоскости даны два пучка прямых с центрами О и О и проективное отображение одного пучка на другой, ставящее в соответствие каждому лучу пучка О луч пучка . Если отображение не является перспективным, то точки пересечения лучей, соответствующих друз другу, при этом отображении лежат на некоторой кривой второго порядка, проходящей через точки О и . Обратно, если на какой-нибудь кривой второго порядка у взяты точки О и и каждому лучу m пучка О ставится в соответствие луч пучка О, идущий в точку пересечения М луча с кривой , то полученное отображение есть проективное отображение пучка О на пучок (очевидно, не являющееся перспективным). Предположим, что на плоскости дана система однородных координат левые части уравнений всех рассматриваемых далее прямых и кривых второго порядка суть многочлены первой, соответственно второй, степени относительно переменных . Докажем сначала второе утверждение теоремы 7. Возьмем какие-нибудь два луча пучка О и соответствующие им лучи пучка О (рис. 247). Точки О и лежат на данной кривой второго порядка. Пара прямых есть распадающаяся кривая второго порядка, уравнение которой может быть записано в виде (10) Точно так же пара прямых есть распадающаяся кривая второго порядка, уравнение которой может быть записано в виде Кривая у проходит через четыре точки и каждая из которых принадлежит обеим кривым (10) и (11); поэтому кривая у принадлежит пучку кривых, определенному кривыми (10) и (11). Рис. 247. Следовательно, уравнение кривой можно записать в виде или (помня о возможности заменить через через в виде т. е. в виде Возьмем теперь в каждом из пучков по проективной системе координат, имеющей лучи соответственно своими фундаментальными лучами. Каждая прямая пучка О имеет уравнение вида а каждая прямая пучка О — уравнение вида причем соответственно А и суть координаты лучей в соответствующих координатных системах . Если прямые соответствуют друг другу в рассматриваемом отображении, то их точка пересечения М принадлежит кривой , значит, координаты этой точки удовлетворяют уравнению (12). Но эти координаты удовлетворяют и уравнениям (13) и (13). Подставляя координаты точки М в эти уравнения, получаем равенства правые которых суть определенные числа, равные между собою в силу (12), так что Итак, при нашем отображении пучка О на пучок лучу, имеющему в выбранной в этом пучке координатной системе координаты соответствует в другом пучке луч, имеющий в соответствующей координатной системе координаты Проективность отображения этим доказана. Доказываем первое утверждение теоремы Штейнера. Пусть между пучками установлено проективное соответствие. Тогда при надлежаще выбранных в каждом пучке проективных координатных системах соответствующие друг другу лучи обоих пучков имеют пропорциональные пары координат: и, следовательно, выражаются через координатные лучи соответственно одинаковым образом: Координаты точки пересечения М лучей удовлетворяют обоим уравнениям и , т. е. Определяя из второго из этих уравнений подставляя результат в первое уравнение (14), получаем т. е. уравнение степени не выше второй (относительно ). Пусть уравнение (15) — первой степени, тогда оно является уравнением прямой , которая оказалась бы осью перспективы для проективного отображения — вопреки нашим предположениям. Итак, уравнение (15) — второй степени и определяет кривую второго порядка, проходящую через точки . Теорема Штейнера доказана.
Дата добавления: 2014-01-11; Просмотров: 958; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |