КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оцінка параметрів моделі з автокорельованими залишками. Метод Ейткена
Нехай в економетричній моделі: , , де — нормально розподілені випадкові залишки. Тоді, щоб усунути автокореляцію залишків , треба перетворити основну модель так, щоб вона мала залишки ,. Оскільки , то для такого перетворення треба записати модель для попереднього періоду: , помножити ліву і праву частину її на та відняти від моделі для періоду t. У результаті дістанемо таку економетричну модель: . Звідси очевидно, що коли вихідні дані перетворені, а саме , , то для оцінювання параметрів можна застосувати 1МНК. Причому для перетворення можна використати перші різниці , , коли наближається до одиниці. Якщо близьке до нуля, то справджується обернене твердження. Зауважимо, що коли = 1, у перетвореній моделі відсутній вільний член (як виняток може бути ситуація, коли вихідна модель містить лінійний часовий тренд). Якщо залишки вихідної моделі характеризувались додатною автокореляцією, використання перших різниць спричинюється до від’ємної автокореляції. Параметр наближено можна знайти на основі залишків, якщо обчислити циклічний коефіцієнт кореляції r. На практиці, як правило, , але r коригується на величину зміщення. Усі ці міркування покладені в основу методів оцінки параметрів економетричної моделі з автокорельованими залишками. Для оцінювання параметрів економетричної моделі, що має автокореляцію залишків, можна застосувати узагальнений метод найменших квадратів (метод Ейткена), який базується на скоригованій вихідній інформації з урахуванням коваріації залишків, система рівнянь для оцінки параметрів моделі на основі методу Ейткена запишеться так: (5.7) або , де А — вектор оцінок параметрів економетричної моделі; Х — матриця незалежних змінних; X' — матриця, транспонована до матриці X; S-1 — матриця, обернена до матриці кореляції залишків; V-1 — матриця, обернена до матриці V, де , а — залишкова дисперсія; Y —вектор залежних змінних. Звідси: (5.8) або . Отже, щоб оцінити параметри моделі на основі методу Ейткена, треба сформувати матрицю S або V. Матриця S має вигляд (5.9) У цій симетричній матриці виражає коефіцієнт автокореляції s-го порядку для залишків . Очевидно, що коефіцієнт автокореляції нульового порядку дорівнює 1. Оскільки коваріація залишків при s > 2 часто наближається до нуля, то матриця, обернена до матриці S, матиме такий вигляд: (5.10) Таку матрицю іноді пропонується використовувати при оцінюванні параметрів моделі з автокорельованими залишками за методом Ейткена. Покажемо, як використовується циклічний коефіцієнт кореляції для обчислення . , (5.11) або (5.12) де —величина залишків у період t; — величина залишків у період t - 1; n— число спостережень. Якщо , то . Зауважимо, що параметр r (або ) має зміщення. Тому, використовуючи такий параметр для формування матриці S, необхідно скоригувати його на величину зміщення. , (5.13) де — величина зміщення (m — кількість незалежних змінних), або (5.14) Матриця , де — залишкова дисперсія, що визначається за формулою (5.15) де — вектор, транспонований до вектора залишків u; — число ступенів свободи. Дисперсія залишків з урахуванням зміщення обчислюється так: (5.16) Величину можна обчислити методом 1МНК з допомогою авторегресійного рівняння . У такому разі: (5.17) де взято як відхилення від свого середнього значення. При реалізації алгоритму Ейткена для оцінки параметрів моделі застосовують такі п′ять кроків. Крок 1. Оцінка параметрів моделі за методом 1МНК. Крок 2. Дослідження залишків на наявність автокореляції. Крок 3. Формування матриці коваріації залишків V або S. Крок 4. Обернення матриці V або S. Крок 5. Оцінка параметрів методом Ейткена.
Дата добавления: 2014-01-11; Просмотров: 1737; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |