Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лаги залежної змінної




Зі щойно сказаного випливає: коли використовувати схему Койка для економетричної моделі, яка має лагові пояснювальні змінні, то в правій частині моделі серед таких змінних з’являється лагова залежна змінна yt– t. З її появою стають стохастичними пояснювальні змінні моделі.

До появи в правій частині моделі лагових значень залежної змінної приводять і деякі інші моделі. Добре відомими моделями такого типу є модель часткового коригування і модель адаптивних сподівань.

Коли відсутнє повне уявлення про об’єкт, його інерційність, то застосовується метод часткового коригування. Розглянемо його.

Нехай

. (6.6)

У цьому рівнянні розглядається як оптимальне значення yt, яке відповідає xt. Так, наприклад, якщо xt — дохід, то yt може визначати величину оптимальних витрат при доході xt. Нехай величина доходу xt різко змінюється (збільшується чи зменшується). При цьому споживчі витрати yt можуть не змінитись адекватно доходу з різних причин: певна інерційність, недостатня інформація, договірні умови і т.ін. Тому в даному разі використаємо коригуючу функцію:

, (6.7)

яка вказує, що протягом поточного періоду часу буде пройдено лише частину відстані між вихідним станом та оптимальним . Об’єднавши (10.15) і (10.16), дістанемо модель часткового коригування:

. (6.8)

Ця залежність дуже схожа на кінцеве рівняння Койка (6.3). Вона відрізняється від (6.3) лише наявністю вільного члена і простішою формою залишків.

Недоліком моделі часткового коригування є те, що оптимальне значення не завжди визначається лише поточним значенням xt, а й попередніми значеннями цієї змінної.

Якщо значення xt змінюється від періоду до періоду, то оптимальне значення також змінюватиметься. Це явище знайшло своє відображення в моделі адаптивних сподівань, яка характеризує зв’язок змінної Y з очікуваним рівнем X. Позначимо його через .

Маємо

, (6.8)

де — очікуване значення xt, яке сформоване в поточний момент часу, ut — залишки, які можуть бути пов’язані з неточним вимірюванням значення змінної .

Оскільки — очікуване значення, то слід доповнити модель (6.9) деякими припущеннями відносно формування очікуваного значення .

Загальноприйнятими в такому разі є припущення про адаптивні сподівання, які можна записати так:

. (6.10)

Це означає, що змінні, які спостерігатимуться протягом поточного періоду порівняно з очікуваними раніше, ураховуються лише частково, що й відображує у формулі (6.10) додатне число , яке не перевищує одиниці. Щоб перейти до змінних , які фактично спостерігаються, запишемо:

,

де

.

Використовуючи оператор зрушення D, можна записати:

Підставимо це значення в (6.10):

помноживши обидві частини на дістанемо:

або

Остаточно це рівняння матиме вигляд

Останнє рівняння є простою моделлю адаптивних сподівань. Порівнявши його з (6.8), побачимо, що воно має такі самі змінні, як і модель часткового коригування, відрізняється лише формуванням залишків. Модель адаптивних сподівань відрізняється від схеми Койка лише наявністю вільного члена.

Остаточні рівняння всіх трьох моделей практично збігаються, бо як у моделі адаптивних сподівань, так і в моделі часткового коригування використовуються вагові коефіцієнти, що спадають за геометричною прогресією.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 456; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.