КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства скалярного произведения векторов
1) ; 2) , если ^или хотя бы один из векторов есть нулевой вектор (справедливо и обратное утверждение); 3) ; 4) для " ; 5) . Справедливость первых четырех свойств непосредственно следует из определения скалярного произведения. Докажем справедливость распределительного свойства 5. согласно формуле (56) и теореме 13.2 о проекции имеем . Пусть векторы и заданы своими координатами , . Найдем скалярное произведение . Вычислим предварительно скалярные произведения единичных векторов. Имеем , , . Векторы взаимно перпендикулярны. Тогда, согласно свойству 2, их произведения друг на друга равны нулю. Используя распределительный закон скалярного произведения, получим Итак, если векторы и заданы своими координатами, то (57) Следствие 1. Если ^, то или . (58) Условие (58) называется условием перпендикулярности двух векторов. Следствие 2. Так как , то . (59) ПРИМЕР 18.1. Вычислить работу по перемещению материальной точки вдоль отрезка из точки в точку под действием постоянной по величине и направлению силы . Решение. Из курса физики известно, что работа , совершаемая при указанных в примере условиях, находится по формуле . Так как , то . Ответ: 5.
Решение. Построим векторы и . Имеем . Тогда ^. Ответ:. Из приведенных примеров следует, что скалярное произведение векторов широко применяются в геометрии при поиске углов, в физике – при определении работы.
Дата добавления: 2014-01-11; Просмотров: 351; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |