Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формула Остроградского – Гаусса




Приложение.

Пример

 

В качестве примера решения электростатических задач можно вычислить электрическое поле, создаваемое диэлектрическим шаром радиуса R, находящемся в однородном электрическом поле . Уравнения электростатики в диэлектрике (25) при =0 имеют вид:

 

, , (27)

 

Из этих уравнений следует, сто потенциал электростатического поля удовлетворяет уравнению

 

(28)

 

причём = -, -. В однородном диэлектрике =const, поэтому уравнение (27) переходит в обычное уравнение Лапласа =0.

Граничное условие (24), выражающее непрерывность вектора индукции, записывается следующим образом:

 

при r = R (29)

 

Здесь – решение уравнения вне сферы, а – внутри сферы. Вместо граничного условия непрерывности тангенциальных составляющих электрического поля можно использовать эквивалентное ему условие непрерывности потенциала

 

= (30)

 

Это условие можно получить, рассматривая интеграл по контуру, изображенному на рис. 2. Воспользовавшись теоремой Стокса и уравнением , находим

 

 

Так как интеграл по любому замкнутому контуру равен нулю, то это значит, что функция непрерывна, откуда и следует условие (30). Из (30) очевидно так же, что

 

 

где элемент направлен касательно к границе раздела. Из этого равенства следует, что тангенциальные компоненты вектора также непрерывны.

Для решения поставленной задачи используем сферическую систему координат, полярная ось которой (ось z) совпадает с направлением напряжённости однородного внешнего электрического поля .

Поскольку на достаточно большом удалении от диэлектрического шара электрическое поле не искажается наличием этого шара, то потенциал должен удовлетворять условию

 

при .

 

Из соображений симметрии ясно, что потенциал не должен зависеть от азимутального угла, поэтому решение уравнения Лапласа запишем в виде разложения по полиномам Лежандра :

,

.

 

Здесь потенциал нормирован так, чтобы при . Так как , то из условия на бесконечности находим .

Воспользуемся теперь граничными условиями (29) и (30):

 

 

 

Приравнивая коэффициенты при одинаковых полиномах Лежандра, получаем

 

=0 при (l =0),

 

при (l =1),

 

при (l >1).

 

Из этих уравнений находим

 

, .

 

Все остальные коэффициенты равны нуля, если .

 

Таким образом, решение задачи имеет вид:

 

(30)

 

Используя формулу , вычислим вектор поляризации диэлектрической сферы

 

С помощью вектора поляризации формулы (30) можно записать в виде:

 

(31)

 

(32)

 

где - объём сферы.

Первые два слагаемых в (31) и (32) представляют собой потенциал однородного внешнего поля, создаваемого внешними источниками. Вторые – это потенциал электрического поля, создаваемого электрическим шаром, поляризованным внешним полем. Вне сферы – это потенциал диполя с дипольным моментом . Внутри сферы поляризованный шар создаёт однородное электрическое поле с напряжённостью

 

(33)

 

Полная напряжённость внутри шара

 

(34)

 

Таким образом, электрическое поле внутри шара не зависят от радиуса шара и ослаблено на значение поля , которое называется деполяризующим полем. Возникновение деполяризующего поля есть частный случай явления экранировки внешнего поля связанными или свободными зарядами.

 

 

 

 

Пусть f (x, y, z) - некоторая функция, а S - замкнутая поверхность, ограничивающая объём V. На отрезке 1-2 (рис. 4), параллельном оси X, f - является функцией одного аргумента x. Интегрируя вдоль этого отрезка получим:

 

 

где и - значения функции f на концах рассматриваемого промежутка.

Построим теперь бесконечно узкий цилиндр, одной из образующих которого является отрезок 1 2. Пусть - площадь поперечного сечения его (величина положительная). Умножая предыдущее соотношение на . Так как dσdx есть элементарный объём dV, заштрихованный на рисунке, то в результате получится:

,

 

где dV – часть объёма V, вырезаемого из него поверхность цилиндра. Пусть dS 1 и dS 2 эле -ментарные площадки, вырезаемые тем же цилиндром на поверхности S, а 1 и 2

единичные нормали к ним, проведенные наружу от поверхности S. Тогда:

= d 2 = - d 1 ,

 

а поэтому:

или короче: где поверхностный интеграл распространён на сумму площадок dS 1 и dS 2. Весь объём V можно разделить на элементарные цилиндры рассматриваемого вида и написать для каждого из них такие же соотношения. Суммируя эти соотношения, получим:

(35)

 

Интеграл справа распространён по всему объёму V, справа – по поверхности S, ограничивающей этот объём. Аналогичные соотношения можно написать для осей Y и Z.

Возьмём теперь произвольный вектор и применим к его компонентам соотношение (35). Получим:

 

и аналогично для компонент A y и A z. Складывая эти соотношения, найдём:

 

 

или:

 

Эту формулу Остроградского – Гаусса можно также записать в виде:

 

 

Смысл её заключается в том, что полный поток вектора через некоторую поверхность S равен суммарной алгебраической мощности источников, порождающих векторное поле.

Если объём V бесконечно мал, то величина divвнутри него может считаться постоянной. Вынося её за знак интеграла и переходя к пределу V → 0, получим:

 

 

Предельный переход надо понимать в том смысле, что область V должна стягиваться в точку, т.е. размеры этой области должны беспредельно уменьшаться по всем направлениям. Эти рассуждения показывают, что величина, стоящая в правой части вышеуказанной формулы, не зависит от формы поверхности S, стягиваемой в точку. Поэтому это выражение можно принять за исходную формулировку дивергенции. Такое определение обладает преимуществом, потому что оно инвариантно, т.е. никак не связано с выбором координат.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 914; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.