Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Второй закон термодинамики. Энтропия

 

Второй закон определяет, какие из процессов в рассматриваемой системе при заданных температуре, давлении, концентрациях могут протекать самопроизвольно, то есть без затраты работы извне; каково количество работы, которая может быть получена при этом, и каков предел возможного самопроизвольного течения процессов.

Несамопроизвольные процессы не могут осуществляться без воздействия извне, само воздействие извне может быть в виде передачи системе энергии из окружающей среды (переход тепла от холодного тела к горячему - процессы в холодильнике).

В отличие от первого закона термодинамики, второй закон обладает более ограниченной областью применения, он носит статистическийхарактер, то есть, применим к системам из большого числа частиц, поведение которых может быть выражено законами статики.

Чем больше тепла выделяется при экзотермических реакциях, тем большим сродством друг к другу обладают реагирующие вещества, тем прочнее связи в полученных продуктах. В обратном направлении процесс может пойти лишь при сообщении системе тепла извне.

Для любой термодинамической системы при данных условиях её существования всегда имеется некоторый общий критерий, которым характеризуется возможность, направле­ние и предел самопроизвольного протекания процессов. Для изолированных систем крите­рием является энтропия (S). Термин был введен Рудольф Клаузиусом (1822-1888).

Любая система стремится к уменьшению величины ∆ H и увеличению величины ∆ S. Второй закон термодинамики устанавливает, что в изолированных системах самопроизвольно могут совершаться только такие процессы, при которых энтропия системы возрастает, и процесс может идти самопроизвольно до такого состояния, при котором энтропия обладает максимальным для данных условий значением.

Изменение энтропии в процессе зависит от начального и конечного состояний и не зависит от пути перехода

Sх.р. = ∑ Sпрод. - ∑Sисх.в-в.

Энтропия - термодинамическая функция, которая характеризует меру упорядоченности системы или меру беспорядка.

Изменение энтропии ∆ S наиболее просто определяется для обратимых изотермических процессов, оно равняется тепловому эффекту процесса, делённому на абсолютную температуру Например, при 0°С, то есть при 273 К, теплота плавления льда ∆ Hпл = 5993,7 Дж/моль; возрастание энтропии при плавлении льда при этой температуре = 21,95 Дж/моль-К. Энтропию относят к 1 молю вещества в стандартных условиях S°298; известно абсолютное значение энтропии для веществ; измеряют ее в энтропийных единицах (э.е.): 1 Дж/мoль∙К = 1 э.е.

Отсюда следует, что в любых изолированных системах (а в них могут совершаться только адиабатные процессы) энтропия системы сохраняет постоянное значение. Следовательно, в изолированных системах всякий самопроизвольно протекающий процесс сопровождается возрастанием энтропии. В случае закрытых систем энтропия в ходе процесса может, как увеличиваться, так и уменьшаться. Процессы для которых: 1) ∆S > 0 - расширение газов, фазовые превращения из твердого к жидкому и газообразному состоянию, растворение кристаллических веществ; 2) ∆S < 0 – сжатие газов, конденсация и кристаллизация веществ.

Установление статистической природы второго закона дало возможность Л. Больцману в 1896 г. определить статистический смысл энтропии

S = kБ.lnW,

где kБ - постоянная Больцмана - kБ = R/NA; W- термодинамическая вероятность данного состояния системы. Термодинамическая вероятность - это число микросостояний, через которые может быть реализовано данное микросостояние. Энтропия является мерой вероятности состояния системы.

Статистическая термодинамика показывает, что энтропия может рассматриваться как сумма составляющих, относящихся к различным формам движения частиц. Различают следующие составляющие энтропии: энтропия поступательного движения молекул Sпост.; энтропия вращательного движения молекул Sвращ.; энтропия вращательного движения атомов и атомных групп, содержащихся в молекуле, Sвн.вращ. (энтропия внутреннего вращения); энтропия колебательного движения атомов и атомных групп, содержащихся в молекуле,Sкол;; и энтропия движения электронов Sэл

S = Sпост + Sвращ + Sвн.вращ + Sкол + Sэл

Энтропия зависит от всех видов движения частиц, содержащихся в молекуле, и возрастает при всех процессах, вызываемых движением частиц: испарение, плавление, растворение, диффузия, расширение газа; возрастает при ослаблении связей между атомами в молекулах и при разрыве связей, то есть при диссоциации молекул. Наоборот, при упрочнении связей энтропия уменьшается, то есть при кристаллизации, конденсации, сжижении газов.

Энтропия увеличивается с повышением температуры и уменьшается с повышением давления. В ряду однотипных соединений абсолютная энтропия растет по мере усложнения атомов, входящих в состав молекул, а также по мере усложнения состава молекул.

 

Вещество Sо298, Дж/моль∙К Вещество Sо298, Дж/моль∙К
HF 173,5 CuO 43,5
HCl 186,4 Cu2O 100,7
HBr 198,1 CO 197,7
    CO2 213,6

Чем больше твердость вещества, тем меньше его энтропия. Например: графит - Sо298 = 5,74 Дж/моль∙К, алмаз - Sо298 = 2,37 Дж/моль∙К. Энтропия в аморфном и стеклообразном состоянии больше, чем в кристаллическом. Энтропия возрастает с увеличением дисперсности частиц вещества.

<== предыдущая лекция | следующая лекция ==>
Закон Гесса. Следствия из него | Термодинамические потенциалы
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 488; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.