Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биосинтез белка




РНК

ДНК

ЛЕКЦИЯ № 3. Нуклеиновые кислоты. Биосинтез белка

АТФ

Жиры

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

Функции липидов:

1) энергетическая (при распаде 1 г липидов образуется 38,9 кДж энергии);

2) структурная (фосфолипиды клеточных мембран, образую­щие липидный бислой);

3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

6) теплоизолирующая (подкожная клетчатка сохраняет тепло).

Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. АТФ образуется в митохондриях в процес­се фосфорилирования. При ее гидролизе высвобождается боль­шое количество энергии. АТФ является основным макроэргом клетки — аккумулятором энергии в виде энергии высокоэнерге­тических химических связей.

 

Нуклеиновые кислоты — это фосфорсодержащие биополиме­ры, мономерами которых являются нуклеотиды. Цепи нуклеино­вых кислот включают от нескольких десятков до сотен миллионов нуклеотидов.

Существует 2 вида нуклеиновых кислот — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезоксирибозу, в состав РНК — рибозу.

Как правило, ДНК представляет собой спираль, состоящую из двух комплиментарных полинуклеотидных цепей, закрученных вправо. В состав нуклеотидов ДНК входят: азотистое основание, дезоксирибоза и остаток фосфорной кислоты. Азотистые основа­ния делят на пуриновые (аденин и гуанин) и пиримидиновые (тимин и цитозин). Две цепи нуклеотидов соединяются между собой через азотистые основания по принципу комплементарности: между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три.

Функции ДНК:

1) обеспечивает сохранение и передачу генетической информа­ции от клетки к клетке и от организма к организму, что связано с ее способностью к репликации;

2) регуляция всех процессов, происходящих в клетке, обеспе­чиваемая способностью к транскрипции с последующей тран­сляцией.

Процесс самовоспроизведения (авто-репродукции) ДНК назы­вается репликацией. Репликация обеспечивает копирование гене­тической информации и передачу ее из поколения в поколение, генетическую идентичность дочерних клеток, образующихся в результате митоза, и постоянство числа хромосом при митоти-ческом делении клетки.

Репликация происходит в синтетический период интерфазы митоза. Фермент репликаза движется между двумя цепями спира­ли ДНК и разрывает водородные связи между азотистыми осно­ваниями. Затем к каждой из цепочек с помощью фермента ДНК-полимеразы по принципу комплементарности достраиваются нуклеотиды дочерних цепочек. В результате репликации образу­ются две идентичные молекулы ДНК. Количество ДНК в клетке удваивается. Такой способ удвоения ДНК называется полукон­сервативным, так как каждая новая молекула ДНК содержит одну «старую» и одну вновь синтезированную полинуклеотидную цепь.

РНК — одноцепочечный полимер, в состав мономеров кото­рого входят пуриновые (аденин, гуанин) и пиримидиновые (урацил, цитозин) азотистые основания, углевод рибоза и оста­ток фосфорной кислоты.

Различают 3 вида РНК: информационную, транспортную и рибосомальную.

Информационная РНК (и-РНК) располагается в ядре и цито­плазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.

Транспортная РНК (т-РНК) также содержится в ядре и цито­плазме клетки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК достав­ляет аминокислоты к рибосомам в процессе трансляции — био­синтеза белка.

Рибосомальная РНК (р-РНК) содержится в ядрышке и рибо­сомах клетки, имеет цепь средней длины. Вес виды РНК образу­ются в процессе транскрипции соответствующих генов ДНК.

Биосинтез белка в организме эукариот происходит в несколь­ко этапов.

1. Транскрипция — это процесс синтеза и-РНК на матрице ДНК. Цепи ДНК в области активного гена освобождаются от гистонов. Водородные связи между комплементарными азотистыми основаниями разрываются. Основной фермент транскрипции РНК-полимераза присоединяется к промотору — специальному участку ДНК. Транскрипция проходит только с одной (кодогенной) цепи ДНК. По мере продвижения РНК-полимеразы по кодогенной цепи ДНК рибонуклеотиды по принципу комплементарности присоединяются к цепочке ДНК, в результате образуется незрелая про-и-РНК, содержащая как кодирующие, так и некодирующие нуклеотидные последовательности.

2. Затем происходит процессинг — созревание молекулы РНК. На 5-конце и-РНК формируется участок (КЭП), через который она соединяется с рибосомой. Ген, т. е. участок ДНК, кодирую­щий один белок, содержит как кодирующие последовательности нуклеотидов — экзоны, так и некодирующие — интроны. При процессинге интроны вырезаются, а экзоны сшиваются. В результате на 5-конце зрелой и-РНК находится кодон-инициатор, который первым войдет в рибосому, затем следуют кодоны, кодирующие аминокислоты полипептида, а на 3-конце — кодоны-терминаторы, определяющие конец трансляции. Цифрами 3 и 5 обозначаются соответствующие углеродные атомы рибозы. Кодоном называется последовательность из трех нуклеотидов, кодирующая какую-либо аминокислоту — триплет. Рамка считывания нуклеи­новых кислот предполагает «слова»-триплеты (кодоны), состоя­щие из трех «букв»-нуклеотидов.

Транскрипция и процессинг происходят в ядре клетки. Затем зрелая и-РНК через поры в мембране ядра выходит в цитоплазму, и начинается трансляция.

3. Трансляция — это процесс синтеза белка на матрице и-РНК. В начале и-РНК 3-концом присоединяется к рибосоме. Т-РНК

доставляют к акцепторному участку рибосомы аминокислоты, ко­торые соединяются в полипептидную цепь в соответствии с шиф­рующими их кодонами. Растущая полипептидная цепь перемеща­ется в донорный участок рибосомы, а на акцепторный участок приходит новая т-РНК с аминокислотой. Трансляция прекращает­ся на кодонах-терминаторах.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 650; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.