Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение. Жизнь на Земле представляет собой форму су­ществования материи




Жизнь на Земле представляет собой форму су­ществования материи. Живая материя зародилась спонтанно, то есть самопроизвольно, как за­кономерный результат космических про­цессов и явилась завершением химиче­ской эволюции – естественного образова­ния и накопления органических соедине­ний. Жизнь можно определить как активное поддер­жание и самовоспроизведение специфиче­ской структуры материи, идущее с затратой полу­ченной извне энергии. Из этого определе­ния вытекает необходи­мость постоянной связи организмов с окружающей средой, осуществляемой путем обмена веществом и энергией. Современ­ная наука не располагает прямыми дока­зательствами того, как и где возникла жизнь. Существуют лишь косвенные сви­детельства, полученные путем экспериментов, и данные из области палеонтологии, гео­логии, палеоклиматологии, астрономии, биохимии. Наиболее известны два ос­новных взгляда на место и характер за­рождения жизни. Суть первого сводится к абиогенному (то есть вне организма) воз­никновению живого в условиях формирующейся Зе­мли. Теорию такого рода в 20-х годах ХХ столетия выдвинули А.И.Опарин и Дж.Холдейн. Этим взглядам наиболее соответ­ствует мнение о том, что жизнь на Земле монофилетична, то есть ведет начало от еди­ного предка.

Согласно другим гипотезам местом возникновения жизни считается Космос, откуда зачатки живого могли быть зане­сены на Землю с веществом метеори­тов, комет или иным образом (метеорит­ная бомбардировка Земли закончилась около 4 млрд. лет назад). Такого рода гипотезы тесно связаны с идеей полифилетического, то есть неоднократного, заро­ждения жизни и в свое время поддержи­вались создателем учения о биосфере В.И.Вернадским.

Возможность абиогенного синтеза ор­ганических соединений типа аминокис­лот, пуринов, пиримидинов, сахаров в условиях восстановительной атмос­феры древнейшей Земли в 50-60-х годах ХХ в. была подтверждена экспериментально, но в то же время сложные органические молекулы найдены в около­звездном пространстве и могли быть за­несены на Землю из Космоса.

Однако сложность решения вопроса связана не с доказательствами возможно­стей синтеза органики на Земле или в Космосе, а с проблемой возникновения генетического кода. Важный и до сего времени нерешенный во­прос состоит в том, каким образом орга­нические молекулы организовались в си­стемы, способные к самовоспроизведе­нию.

Живое вещество характеризуется некоторыми типичными чертами. Главнейший при­знак живого – дискретность, то есть суще­ствование в виде отдельных организмов (особь, индивидуум). Каждый ор­ганизм представляет собой открытую це­лостную систему, через которую, как яв­ствует из определения жизни, проходят потоки вещества и энергии. Поэтому не­редко говорят не просто о живом веществе, но о живых системах.

Неотъемлемое свойство любой живой системы – обмен веществ, или метабо­лизм. Параллельно метаболизму в лю­бом организме осуществляются постоян­ное превращение энергии и ее обмен.

Для живых организмов характерно самовоспроизведе­ние, обес­печивающее непрерывность и преемственность жизни.

Живые организмы – самоорганизую­щиеся и саморегулируемые системы. Благодаря саморегуляции устанавливаются на определенном уровне различные физиологические про­цессы. Организмы являются открыты­ми термо­динамическими системами, способными к любому об­мену веществом и энергией. Без поступления энергии извне эти системы не могут су­ществовать и поддерживать свою целост­ность.

Перечисленные основные свойства определяют сложность живых систем, а также способность само­стоятельно поддерживать и увеличивать относительно высокую степень упорядо­ченности в среде с меньшей упорядочен­ностью.

Основу живого вещества составляют два класса химических соединений – белки и нуклеи­новые кислоты. Белки ответственны за обмен веществ и энергии в живой систе­ме, то есть за все реакции синтеза и распада, протекающие в организме непрерывно. Нуклеиновые кислоты обеспечивают хранение и передачу наследственной информации, то есть способность живых систем к самовоспроизведению. Они являются матрицей, содержащей полный набор информации, на основе которого синтезируются видоспецифические белки клетки.

В состав живых организмов также входят липиды (жиры), углеводы. Органические ве­щества других классов встречаются у представителей отдельных групп организмов.

В живых системах найдены многие хи­мические элементы, присутствующие в окружающей среде. Однако для жизни необходимо около 20 из них. Эти эле­менты получили название биогенных, по­скольку постоянно входят в состав орга­низмов и обеспечивают их жизнедеятель­ность. В среднем около 70% сырой массы организмов составляет кислород (O), 18% – углерод (C), 10% – водород (H). Далее следуют азот (N), кальций (Ca), калий (K), фосфор (P), магний (Mg), се­ра (S), хлор (Cl), натрий (Na). Это универсальные биогенные элементы, при­сутствующие в клетках всех организмов и называемые макроэлементами. Часть элементов содержится в орга­низмах в крайне низких концентрациях (до тысячных долей процента), но они также необходимы для нормальной жизнедеятельности (микроэлементы). Их функции и роль очень разнообразны. Многие микроэлементы входят в состав ферментов, некоторые влияют на рост. Насчитывается до 30 микроэлементов – металлов (Al, Fe, Cu, Mn, Zn, Mo, Co, Ni, Sr) и неметаллов (I, Se, Br, F, As, B).

Присутствие в клетках биогенных элементов зависит от особенностей организма, от со­става среды, пищи, экологических усло­вий, в частности от растворимости и кон­центрации солей в почвенном растворе. Недостаточность или избыточ­ность биогенных элементов приводит к ненормальному развитию организма или даже к его гибели. Добавки био­генных элементов в почву для создания их оптимальных концентраций широко используются в сельском хозяйстве.

Обмен веществ, или метаболизм, – это совокупность протекающих в организ­мах химических превращений, обеспечивающих их рост, развитие, жизнедеятель­ность, воспроизведение, постоянный кон­такт и обмен с окружающей средой. В ходе обмена веществ происходит рас­щепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и меж­клеточного вещества.

Обмен веществ сводится к двум про­тивоположным, но одновременно взаимосвязанным про­цессам: анаболизму и катаболизму. Первый сводится к построению веществ тела в результате реакций синтеза с потреблением энергии. Второй объединяет реакции распада с высвобождением энергии. Процессы синтеза и распада белков, нуклеиновых кислот, липидов, углеводов и аскорбиновой кислоты получили назва­ние первичного обмена, или первичного ме­таболизма. Они свойственны всем живым существам и играют решающую роль в поддержании их жизнедеятельности. Образование и превращение прочих клас­сов органических соединений относятся к вторичному метаболизму. Вторичный метаболизм наиболее обычен для расте­ний, грибов и ряда прокариот (от греческого «про» – перед, «карион» – ядро), то есть ор­ганизмов, не имеющих морфологически оформленного ядра. Процессы вторично­го метаболизма и сами вторичные мета­болиты часто играют существенную адаптив­ную (приспособительную) роль у организмов, лишенных спо­собности к перемещению в пространстве.

Организмы поддерживают свое существование и целостность, получая энергию извне. Накапливается эта энергия в виде энергии химических связей. Наиболее энергоемкими являются жиры, угле­воды, менее энергоемкими – белки. Универсальный источник энергии для всего живого на Земле – энергия солнечной ра­диации, но способы использования ее живыми организмами различны. Зависят от световой энергии фотоавтотрофные организмы (зеленые растения и фототрофные прокариоты). Они запасают энергию, образуя первичные органические соединения из неорганических в процессе фотосинтеза. Гетеротрофные организмы (животные, грибы, большинство прока­риот) не могут создавать органические соединения из неоргани­ческих. В качестве источника углерода они используют органические формы этого элемента. В качестве источника энергии они также используют органические веще­ства, созданные в процессе жизнедеятель­ности фотоавтотрофами. Х емоавтотрофные организмы (некоторые прокариоты) получают энергию, выделяемую при перестройке молекул минеральных или органических соединений в процессе химических реакций. Источником углерода для разных групп хемоавтотрофов служат также минеральные формы углерода.

Высвобождение энергии осуществляет­ся в процессе распада органических со­единений чаще всего с помощью двух процессов – брожения и дыхания.

Индивидуальное развитие отдельного организма от зарождения до смерти по­лучило название онтогенеза. Отдельные онтогенезы в цепи поколений склады­ваются в единый последовательный про­цесс, называемый гологенезом. Совокуп­ность онтогенезов, то есть гологенез, лежит в основе эволюции. Под эволюцией под­разумевается процесс необратимого исто­рического развития живой природы и от­дельных его звеньев, ведущий к усложне­нию или упрощению организации живо­го. В эволюционном процессе различают микроэволюцию и макро­эволюцию.

Под микроэволюцией подразумевают процессы видообразования, сопрово­ждающиеся изменением генетического со­става популяций, формированием адапта­ций к меняющейся среде.

Макроэволюция – это образование таксонов выше ранга вида. Ход макроэ­волюции определяется микроэволюцией. Макроэволюция реализуется в филогене­зе, то есть в процессе исторического стано­вления и развития отдельных видов и других систематических групп более высокого ранга. Как и вся эволю­ция, филогенез связан с онтогенезом и гологенезом. Этот процесс принято из­ображать графически в виде филогенети­ческого древа (или филемы), показываю­щего возможные родственные связи ме­жду отдельными ветвями живого (или филами). Ход филогенеза чаще всего под­чиняется определенным правилам, называемым правилами эволюции (рис. 1.1).

Рис. 1.1. Схема соотношения онтогенеза и филогенеза (пояснения терминов в тексте).

На Земле существует около 2-2,5 млн. видов организмов и около 500 млн. видов вымерло в предшествующие геологические эпохи. Однако при таком многообразии живого можно выде­лить несколько разных уровней строения и изучения живой материи. Главнейшие уровни строения живого: молекулярно-генетический, онтогенетический, популяционно-видовой и биогео­цено­тический. На каждом уровне строения живая материя характеризуется специфическими элементарными структу­рами и элементарными явлениями.

На молекулярно-генетическом уровне гены представляют элементарные структуры, а элементарными явлениями мож­но считать их способность к конвариантной редупликации – самовоспроизведению с из­менениями на основе матричного принципа и к мутациям.

На онтогенетическом уровне элементарной структурой живого следует счи­тать особь, индивид, а элементарным явле­нием – онтогенез, или развитие особи от за­рождения до смерти.

Основу популяционно-видового уровня представляет популяция, а процесс свободного скрещивания (панмиксия) – элементарное явление.

Биогеоценотический уровень жиз­ни характеризуется элементарной структу­рой – биогеоценозом, а обмен веществ и энергии в биогеоценозе составляет элементарное явление.

При изучении живой материи выде­ляют несколько уровней ее организации:

1. моле­кулярный;

2. клеточный;

3. тканевой;

4. органный;

5. онто­генетический;

6. популяционный;

7. видо­вой;

8. биогеоценотический;

9. биосферный.

Каждому уровню со­ответствует особая биологическая наука, несколько биологических наук или раздел биологии.

На молекулярно-генетическом уровне живые организмы исследуются молекулярной биологией и генетикой; на клеточном – цитологией; на тканевом и органном – анатомией и морфологией, а также физиологией; на онтогенетическом – морфологией и фи­зиологией; на популяционном – популя-ционной генетикой; на видовом – систе­матикой и эволюционным учением; на биогеоценотическом – геоботаникой, эко­логией, биогеоценологией; на биосфер­ном – биогеоценологией.

Земля сформировалась как плотное тело около 4,6 млрд. лет назад. Этой цифрой датируется начало так называемого гадейского эона (надэры). Нет геологических доказательств, подтверждающих суще­ствование жизни на Земле в это время, но несомненно, что живое возникло или было занесено на Землю именно в гадее, поскольку в архейских отложениях в начале следующего эона уже встречаются разнообразные организмы. Предполагается, что обогащение водоемов в конце гадея аминокислотами, пуриновыми и пиримидиновыми основаниями, сахарами созда­ло так называемый «первичный бульон», слу­живший источником питания древнейшим гетеротрофам.

Архейский эон (надэра), или архей, ох­ватывает период времени от 3900 до 2600 млн. лет назад. К этому времени относится возникновение древнейших осадочных пород, образованных частицами, оса­ждавшимися из водной среды, часть которых сохранилась в районе рек Лимпопо (Африка), Исуа (Гренландия), Варавууна (Австралия), Алдана (Азия). Эти породы содержат биогенный углерод, связанный в своем проис­хождении с жизнедеятельностью организмов, а также строматолиты и микрофоссилии. Строматолиты – кораллоподобные оса­дочные образования (карбонатные, реже крем­ниевые), представляющие собой продукты жизнедеятельности древнейших автотрофов. В протерозое они всегда связаны с цианобактериями, но их происхождение в архее не вполне ясно. Микрофоссилии – микроскопи­ческие включения в осадочные породы иско­паемых микроорганизмов.

В архее все организмы относились к прока­риотам. Часть из них, очевидно, была гетеротрофами-деструкторами (разрушителями), ис­пользо­вавшими органические вещества, рас­творенные в «первичном бульоне» и превра­щавшими их в процессе жизнедеятельности в простые соединения типа Н2О, СО2 и NН3. Другая часть микроорганизмов архея состави­ла группу продуцентов – организмов, спо­собных к осуществлению либо аноксигенного фотосинтеза (фотосинтеза без выделения кис­лорода), либо хемосинтеза.

На стадии аноксигенного фотосинтеза оста­лись современные пурпурные и зеленые серные фотобактерии. Донором электронов в процессе фотосинтеза у них служил главным образом Н2S, а не Н2О. Микроорганизмы-продуценты могли уже фиксировать атмос­ферный азот.

Получение энергии у большинства архей­ских организмов осуществлялось путем бро­жения или специфического анаэробного дыха­ния, при котором источником кислорода, отсутствующего в атмосфере, служили суль­фаты, нитриты, нитраты и другие соединения.

Древнейшие бактериальные биоценозы – сообщества живых организмов, включав­шие только продуцентов и деструкторов, были похожи на пленки плесени (так называемые бактериальные маты), располагавшиеся на дне водоемов или в их прибрежной зоне. Оазисами жизни часто служили вулканические районы, где на поверхность из литосферы поступали водород, сера и сероводород – основные до­норы электронов. Геохимический цикл (круговорот веществ), существовавший на планете до возникновения жизни и наиболее ярко про­являвшийся, очевидно, в циркуляции атмос­феры, пополнился биогеохимическим циклом. Биогеохимические циклы (круговорот ве­ществ, связанный с организмами), совершав­шиеся при помощи продуцентов – аноксигенных фотосинтетиков и деструкторов, бы­ли относительно простыми и осуществлялись главным образом в форме восстановленных соединений типа сероводорода, аммиака.

В про­терозойском эоне, или протерозое, который начался 2600 млн. и закончился 570 млн. лет назад, такое положение изменилось. Ископаемые остатки и разнообразные следы жизни в осадочных по­родах этого времени довольно обычны. Стро­матолиты образуют мощные многометровые толщи и их существование в протерозое связывают с жизнедеятельностью циано­бактерий. Эта новая группа продуцентов по­явилась на арене жизни в самом начале протерозойского эона или даже в конце архея. Она обладала способностью к оксигенному фотосинтезу, то есть могла использовать Н2О в качестве донора электронов, при этом сво­бодный кислород выделялся в атмосферу. По­явление цианобактерий привело к преобразованиям всей био­сферы Земли. Восстановительная атмосфера Земли превратилась в окислительную. Анаэробное живое население планеты постепенно сменилось на аэробное. Концентрация кислорода в результате жиз­недеятельности цианобактерий постепенно по­вышалась и примерно 2 млрд. лет назад до­стигла 1% от современной. Атмосфера стала окислительной. Это послужило пред­посылкой развития аэробного хемосинтеза и эволюционно самого молодого из процессов получения энергии – аэробного дыхания. Су­щественно изменяются и усложняются биогео­химические циклы. Накопление кислорода ста­ло препятствием для циркуляции элементов в форме восстановленных соединений. Бакте­риальные архейские сообщества строгих анаэ­робов заменяются цианобактериальными со­обществами (цианобактериальные маты), в которых главенствующую роль играют фотосинтезирующие прокариоты.

Изменение характера атмосферы оказалось главной предпосылкой появления строгих аэробов эукариот – этого важнейшего биоло­гического события середины протерозоя. Первые эукариоты появились около 1,8 млрд. лет назад и были, по-видимому, планктонны­ми, или свободноплавающими организмами. Древние эукариотические организмы могли быть как гетеротрофами, так и автотрофами, пополнявшими две основные, ранее существо­вавшие экологические группы продуцентов и деструкторов. Длительное время в протеро­зое прокариоты и эукариоты существовали со­вместно в составе альгобактериальных сооб­ществ (сообществ, где компонентами были эукариотические водоросли и бактерии), заме­нивших 1,4 млрд. лет назад цианобактериальные сообщества.

Происхождение эукариот объясняют раз­лично. Традиционная точка зрения связывает их появление с постепенным усложнением структуры прокариотической клетки. Согласно другой теории, которая разделяется сейчас большинством биологов, эукариоты возникли как итог внутриклеточного симбиоза древних безоболочечных анаэробных микроорганиз­мов с разными типами оксифотобактерий. Проблема возникновения эукариотных организмов до конца не решена. Существуют различные гипотезы происхождения эукарио­тической организации живой материи. Одной из таких гипотез является гипотеза эндосимбиоза (симбиогенеза). Эта теория была выдвинута в конце XIX – начале XX в. Современный этап ее раз­вития связан с работами американского биолога Линн Маргелис, которая предполагает, что эукариотическая клетка возникла в результате нескольких после­довательных эндосимбиозов (симбиотического существования одной клетки внутри другой) древних безоболочечных анаэробных прокариот, способных к процессу брожения, с различными прокариотическими аэробами. Эукариотные клетки сформиро­вались в результате симбиоза между чрезвы­чайно далекими друг от друга видами прока­риот: нуклеоцитоплазма образовалась из организмов-«хозяев», митохондрии – из бактерий, дышащих кислородом, пластиды эукариот. На первом этапе эндосимбиоза возникли различные одноклеточные эукариотические простейшие, которые в процессе эволюции да­ли начало многоклеточным эукариотам из царств грибов, растений и животных. Общая схема процесса эндосимбиоза показана на рис. 1.2.

 

Рис. 1.2. Схема происхождения эукариотических клеток путем эндосимбиоза (по Л.Маргелис, с изменениями): 1 – разные группы оксифотобактерий, обладающие различными пигментами (предшественники хлоропластов), 2 – термоплазмы (термостойкие прока­риоты), 3 – подвижные нефотосинтезирующие про­кариоты (предшественники митохондрий), 4 – по­движные спирохеты или спироплазмы (предшест­венники жгутиков), 5 – гетеротрофная амебоидная эукариотическая клетка, 6 – древнейшая эукариотическая подвижная клетка, обладающая жгутиком, 7 – царство грибов, 8 – царство животных, 9 – зона нескольких предполагаемых симбиозов по­движной эукариотической клетки с различными группами оксифотобактерий; возникли различные линии эволюции растений, одна из них дала начало высшим растениям (10).

В конце протерозоя, очевидно, существова­ли многоклеточные растения и грибы, но их ископаемые остатки не сохра­нились. Древнейшие многокле­точные организмы появились примерно 950 млн. лет назад. С этого времени на­чинают исчезать строматолиты, а экологиче­ские системы Земли стали сложнее на одно звено. В них, помимо проду­центов и деструкторов, включились консументы – потребители органического веще­ства живых организмов. Еще до начала четвертого эона – фанерозоя, уже существо­вали сообщества, в которых преобладали планктонные (свободноплаваю­щие) и бентосные (донные) водоросли и многоклеточные растительноядные жи­вотные. Роль цианобактерий и других прокариот в формировании основной массы биогеоценозов позднего протерозоя была незначительной.

Фанерозойский эон, или фанерозой (надэра явной жизни), начался примерно 570 млн. лет назад и продолжается до настоящего времени. Осадочные толщи фанерозоя изобилуют иско­паемыми животными и растениями. Само начало фанерозоя датируется по появлению в ископаемых остатках большого числа многоклеточных животных, имеющих внутренние или наружные скелеты. Фанерозой принято делить на три эры: па­леозойскую, или эру древней жизни, мезозой­скую – эру средней жизни и кайнозойскую – эру новой жизни.

Особенность истории развития живых ор­ганизмов в фанерозое состояла в том, что определенным группам животных соответ­ствовали определенные группы растений. Это и понятно, поскольку основу для развития жи­вотных создавало процветание тех или иных растительных сообществ. Поэтому эволюция растений шла с некоторым опереже­нием эволюции животных.

Древнейшие наземные растения риниофиты появились в конце силура (410-420 млн. лет назад). Во второй половине девона – карбоне (430 – 300 млн. лет назад) возникли все основные группы (таксоны) ныне живущих и вымерших растений, кроме покрытосеменных (цветковых). Однако господствующими формами в течение всего палеозоя, начиная с середины девона, были споровые: хвощевидные, плауновидные и папоротниковидные, древовидные формы которых нередко образовывали леса. Голосеменные появились на Земле не позд­нее верхнего карбона (290 млн. лет назад), но их господство на­чинается с конца перми (около 220 млн. лет назад) и продолжается в течение почти всего мезозоя до середины мела. В нижнем мелу, примерно 145-120 млн. лет тому назад, по­являются покрытосеменные, которые к середи­не верхнего мела занимают господствующее положение. Это положение они сохранили в течение всего кайнозоя до нашего времени (рис. 1.3).

Рис. 1.3. Эволюционный возраст основных филогенетических групп растительного мира.

Со времени К.Линнея (XVIII в.) в на­уке господствовала система двух основных групп организмов (или царств органического мира): растений (Vegetabilia, или Р1апtае) и жи­вотных (Аnimalia). Однако открытие в XX в. ряда важных различий в метаболизме и ультраструктуре клетки у разных групп организмов побудило биологов из­менить устоявшийся взгляд. Начиная с середины 50-х годов ХХ в. широко обсу­ждаются другие возможные системы (Р.Уиттейкер, Г.Кёртис, Ч.Джефри, Е.Додсон, А.Тахтаджян, Я.Старобогатов). Количество выделяемых царств в этих системах колеблется от трех до де­сяти. В основу деления живого на цар­ства положены способы питания, особен­ности ультраструктуры митохондрий и пластид, химический состав клеточных оболочек и основных запасных веществ клеток, некоторые другие принципы.

Ниже приведен краткий пере­чень крупнейших систематических трупп, позволяющий представить значимость и положение в общей системе живого изучаемых в курсе “Ботаника” таксонов.

Империя неклеточные организмы ( Noncellulata ). Представители не имеют морфологически оформленной клетки. Империя включает одно царство вирусы (Virae).

Империя клеточные организмы ( Сellulata ). Представителиимеют морфологически оформленную клетку. Включает две подимперии.

1. Подимперия доядерные ( Procaryota ) – не имеют морфологически оформленного ядра. Объединяет два царства:

а) Царство архебактерии (Archaebacteria) – в основе клеточных оболочек имеют кислые полисахариды без муреина;

б) Царство настоящие бактерии, или эубактерии (Eubacteria) – в качестве основного структурного компонента клеточных оболочек содержится гликопротеид муреин.

2. Подимперия ядерные или эукариоты ( Eucaryota ) – имеют морфологически оформленное ядро. Подразделяется на четыре царства:

а) Царство протоктисты (Protoctista) – автотрофы или гетеротрофы; тело не расчленено на вегетативные органы; отсутствует стадия зародыша; гаплоидные или диплоидные организмы; включает водоросли и грибоподобные организмы.

б) Царство животные (Animalia) – гетеротрофы; питание путем заглатывания или всасывания; отсутствует плотная клеточная стенка; диплоидные организмы; имеется чередование ядерных фаз.

в) Царство грибы (Fungi, Mycota) – гетеротрофы; питание путем всасывания; имеется плотная клеточная стенка, в основе которой хитин; гаплоидные или дикарионтические организмы; тело не расчленено на органы и ткани;

г) Царство растения (Plantae) – автотрофы; питание за счет процесса аэробного фотосинтеза; имеется плотная клеточная оболочка, в основе которой целлюлоза; характерно чередование полового (гаметофит) и бесполого поколения (спорофит) с преобладанием диплоидного поколения. К растениям относятся ископаемые риниофиты и зостерофиллофиты, а также современные моховидные, хвощевидные, плауновидные, папоротниковидные, голосеменные и покрытосеменные.

Объектом изучения ботаники являются в первую очередь представители царства растения, фототрофные протоктисты – водоросли. В то же время в данном курсе будут рассматриваться отдельные вопросы по морфологии и систематике некоторых групп фотоавтотрофных прокариот (цианобактерии), а также грибов и грибоподобных организмов. Эти систематические группы еще недавно считались представителями царства растения.

У многих растений и водорослей функции полового и бесполого размножения выполняют разные поколения, которые нередко представлены морфологически различными особями. Соотношения этих двух поколений у основных групп показаны на рис. 1.4.

Рис. 1.4. Соотношение и строение полового и бесполого поколений в жизненных циклах. А – водоросли; Б – мхи, В – папоротники, Г – голосеменные, Д – покрытосеменные (цветковые).

Каждая из основных групп организмов является предметом изучения самостоятельной биологической науки или комплекса близких наук. В частности, бактерии (исключая цианобактерии, которые традиционно исследо­вались ботаниками-альгологами, то есть специалистами по водорослям) изучают­ся бактериологией или наукой более ши­рокого плана – микробиологией, предме­том интереса которой служат все микро­скопические живые организмы. Проти­стология исследует простейших, то есть одноклеточных, колониальных и многоклеточных эукариот, имеющих дотканевую организацию. Микология (от греческого «микес» – гриб) изучает представителей царства грибов. Ботаника изучает царство растений и автотрофных прокариот. Наконец, зоология занимается животными организмами. Особое царство составляют доклеточные формы жизни – вирусы (Virae). Наука о вирусах называется вирусологией.

Ботаника (от греческого «ботанэ» – расте­ние, трава) – комплекс биологических на­ук о растениях. Первые датируемые сведения о расте­ниях содержатся в клинописных таблицах Древнего Востока. Основы ботаники как науки заложили древние греки. Древнегреческий фи­лософ и естество­испытатель Теофраст (около 370-285 лет до н. э.) назван К. Линнеем «от­цом ботаники». После общего упадка есте­ствознания в средние века ботаника начинает интенсивно развиваться с XVI в.

В XVIII – XIX вв. происходит развитие и дифферен­циация ботаники на отдельные ботанические дисциплины и к первой половине XX в. складывается весь комплекс наук о растениях. Основной раздел ботаники – система­тика растений. Систематика описывает все ископаемые и современные растительные организмы, разрабатывает классификацию и создает научную основу для изучения филогении растений, то есть выявляет род­ство таксонов.

Морфология исследует осо­бенности и закономерности внешнего строения растений. Основные успехи в этой области знаний были достигнуты преимущественно в XIX и XX вв. Иссле­дование внутренней структуры расте­ний – задача анатомии, которая зароди­лась в середине XVII в. после изобрете­ния микроскопа, но, подобно морфоло­гии, главнейшие открытия были также сделаны в XIX и XX вв.

Эмбриология – ботаническая дисцип­лина, изучающая закономерности образо­вания и развития зародыша растений. Основы эмбриологии заложены во второй половине XVIII в., но фундамен­тальные открытия были сделаны к нача­лу XX в.

Физиология тесно связана с морфоло­гией и биохимией растений. Начало фи­зиологии было положено опытами по пи­танию растений, осуществленными во второй половине XVIII в. Ныне это ак­тивно развивающаяся наука, занимаю­щаяся изучением происходящих в расте­ниях процессов: фотосинтеза, транспорта веществ, водного обмена, роста, развития, дыхания.

География растений зародилась в начале XIX в. Она занимается изуче­нием основных закономерностей пространственного распространения таксонов (видов, родов и более высоких) и растительных сообществ на Земле. Из бота­нической географии к концу XIX в. выде­лилась геоботаника – наука, исследую­щая основные закономерности формирования, состава, структуры и функционирования растительных сооб­ществ, а также особенности их пространственного распределения.

Экология расте­ний выясняет отношение растительных организмов к факторам среды и взаимоотношения растений с другими организмами. Она возникла на стыке экологии и ботаники на рубеже XIX и XX вв. и в настоящее время это одна из важнейших отраслей знаний о природе.

Помимо фундаментальных ботаниче­ских дисциплин, выделяют ряд при­кладных наук, также относимых к бота­нике. Главнейшей из них считается бота­ническое ресурсоведение, или экономиче­ская ботаника. Она рассматривает все аспекты использования растений челове­ком.

В зависимости от объектов и методов их изучения, а также практических по­требностей выделяют ряд других ботани­ческих дисциплин. В пределах морфоло­гии растений выделяют карпологию – раздел знаний о плодах, из анатомии – палинологию, изучающую пыльцу и споры. Пред­метом исследования палеоботаники яв­ляются ископаемые растения. У палеобо­таники свои методы изучения, близкие к методам палеонтологии.

Альгология изучает водоросли, бриоло­гия – мхи, птеридология – папоротники.

Особая роль растений в жизни на Земле состоит в том, что без них было бы не­возможно существование животных и челове­ка. Зеленые растения являются основной группой организмов, способных аккумулировать энергию Солнца, создавая органические вещества из не­органических. При этом растения извлекают из атмосферы диоксид углерода (углекислый газ) и выделяют кислород, поддерживая ее по­стоянный состав. Будучи первичными проду­центами органических соединений, растения являются определяющим звеном в сложных цепях питания большинства гетеротрофов, на­селяющих Землю.

Благодаря фотосинтезу и непрерывно дей­ствующей трансформации биогенных элемен­тов создается устойчивость всей биосферы Зе­мли и обеспечивается ее нормальное функцио­нирование.

Обитая в различных условиях, растения образуют растительные сообщества (фитоценозы), обусловливая разнообразие ландшафтов и экологических ус­ловий для других организмов. При участии растений формируются по­чва, торф; скопления ископаемых растений образовали бурый и каменный уголь. Глубо­кие нарушения растительности неизбежно вле­кут за собой необратимые изменения биос­феры и отдельных ее частей и могут оказаться гибельными для человека как биологического вида.

Существует пять основных сфер, где прямо или косвенно используются расте­ния:

1) в качестве продуктов питания для человека и корма для животных,

2) как источники сырья для промышленности и хозяйственной деятельности,

3) как лекарственные средства и сырье для получе­ния медицинских препаратов,

4) в деко­ративном озеленении,

5) в охране и улучшении окружающей среды.

Пищевое значение растений общеиз­вестно. В качестве продуктов питания че­ловека и корма для животных, как прави­ло, используются части, содержащие за­пасные питательные вещества или сами вещества, извлеченные тем или иным образом. Потребность в углеводах в ос­новном удовлетворяется за счет крахмал- и сахаросодержащих растений. Роль источников растительного белка в рацио­не человека и животных выполняют в ос­новном некоторые растения из семейства бобовых. Плоды и семена многих видов используют для получения растительных масел. Большинство витаминов и ми­кроэлементов также поступает вместе со свежей растительной пищей. Существен­ную роль в питании людей играют пря­ности и растения, содержащие кофеин – чай и кофе.

Техническое использование растений и продуктов из них осуществляется по не­скольким основным направлениям. На­иболее широко применяются древесина и волокнистые части растений. Ценность древесины определяется потребностью в ней при изготовлении дере­вянных конструкций любых типов и при производстве бумаги. Сухая перегонка древесины позволяет получить значительное количество важных органи­ческих веществ, широко упот­ребляемых в промышленности и в быту. Во многих странах древесина – один из основных видов топлива. Остро стоит вопрос о за­мене угля и нефти энергетически богаты­ми веществами, продуцируемыми неко­торыми расте­ниями.

Несмотря на широкое распростране­ние синтетических волокон, растительные волокна, получаемые из хлопчатника, льна, ко­нопли, джута, липы сохранили большое зна­чение при производстве многих тканей. Для лечебных целей растения приме­няют очень давно. В народных и тради­ционных медицинах они составляют ос­новную массу лекарственных средств. В научной медицине России примерно треть препаратов, применяемых для лечения, получают из растений. Считается, что с лечебными целями народы мира ис­пользуют не менее 21000 видов растений и грибов. В России около 55 видов лекарственных растений культивируется. Подробно с использованием растений в медицине студенты ознакомятся в кур­сах фармакогнозии и фармакологии. Не менее 1000 видов растений разво­дят в декоративных целях.

Функ­ционирование всех экологических систем биосферы, частью которой является и че­ловек, целиком определяется растениями. Растительные ресурсы относятся к категории восполняемых (при правиль­ной эксплуатации) в противоположность, например, невосполняемым мине­ральным ресурсам. Чаще всего растительные ресурсы делят на ресурсы при­родной флоры (сюда относятся все дикие виды) и ресурсы культиви­руемых растений. По объему и значимо­сти в жизни человечества они существен­но различаются. Природные ресурсы флоры ограни­чены и в их естественном объеме могли бы обес­печить питанием лишь около 10 млн. че­ловек. Наиболее широко дикорастущие растения исполь­зуются в качестве технических источни­ков сырья, в хозяйственной деятельности человека, а также как источник лекарственных средств. Появление культурных растений и возникновение дополни­тельных растительных ресурсов связано со становлением древнейших человече­ских цивилизаций. Существование этих цивилизаций могло обеспечиваться толь­ко определенным «ассортиментом» окультуренных растений, дающих необ­ходимое количество растительных бел­ков, жиров и углеводов. Жизнь современ­ного человека и современная цивилиза­ция невозможны без широкого ис­пользования культивируемых растений. Почти все культурные растения (примерно 1500 видов) относятся к покрытосеменным. К середине XX в. культивируемые расте­ния занимали 15 млн. км2, то есть около 10% всей поверхности суши Земли.

Наращивание ресурсов культурных растений возможно в весьма широких пределах как за счет увеличения площа­дей их возделывания (экстенсификации), так и за счет улучшения агротехники и выведения высокопродуктивных сортов (интенсификация). Считается, что полная мобилизация восполняемых ресурсов, включая растительные, может обеспечить существование на Земле не менее 6 млрд. человек.

Переходящие к земледелию народы часто независимо друг от друга вводили в культуру растения окружающей их ди­кой флоры. Можно выделить ряд ос­новных центров древнейшего земледелия, называемых еще центрами происхожде­ния культурных растений. Учение о центрах происхождения культурных растений впервые было разработано Н.И.Вавиловым (1887-1943). Согласно его представлениям существовало восемь таких центров. В настоящее время выде­ляют десять центров происхождения куль­турных растений (рис. 1.5).

Рис. 1.5. Центры происхождения культурных растений (по Н.И.Вавилову, с изме­нениями): 1 – средиземноморский, 2 – переднеазиатский, 3 – среднеазиатский, 4 – эфиопский, 5 – китайский, б – индий­ский, 7 – индонезийский, 8 – мексиканский, 9 – перуанский, 10 – западносуданский.

У европеоидных народов с примы­кающей к ним группой эфиопов отме­чены четыре центра: среди­земноморский, переднеазиатский, эфиоп­ский, среднеазиатский. Монголоиды имели один центр – севе­рокитайский. У австралоидных народов юго-восто­ка и юга Азии земледелие развилось автохтонно (то есть независимо) в двух оча­гах: индийском и индонезийском (или индомалайском). У американских народов возникли мексиканский и перуанский центры. Не­гроидные народы тропической Африки имели один основной центр земледелия – западносуданский.

Средиземноморский центр объединяет области Европы, Африки и Азии, приле­гающие к Средиземному морю. Это роди­на некоторых сортов овса, льна, мака, белой горчицы, маслины, рожкового де­рева, капусты, моркови, свеклы, лука, чеснока, спаржи, редьки.

Переднеазиатский очаг расположен в Малой Азии, Закавказье, Иране. Это родина пшеницы однозернянки и двузер­нянки, твердой пшеницы, ржи, ячменя.

Среднеазиатский (Центральноазиатский) центр охватывает бассейны Сырдарьи и Амударьи, индийское Пятиречье (формирующее реку Инд). Он является родиной мягкой пшеницы, гороха, чече­вицы, нута, маша, возможно, конопли, сарептской горчицы, винограда, груши, абрикоса и яблони.

Эфиопский центр – Эфиопия и Сомали. Это родина сорго, кунжута, клещевины, кофейного дерева, некоторых форм овса, финиковой пальмы.

Китайский центр располагается в обла­сти умеренного пояса бассейна реки Хуанхэ. Здесь сформировались культуры проса, гречихи, сои, ряда листопадных плодовых деревьев, таких, как хурма, ки­тайские сорта сливы и вишни.

Индийский центр находится на полуострове Ин­достан. Основными культурами древнего земледелия этого очага были тропические виды, часть которых затем продвинулась в страны умеренного климата. Индий­ский центр – родина риса, азиатских хлоп­чатников, манго, культурных форм огур­ца и баклажана.

Индонезийский центр занимает главным образом территорию современ­ной Индонезии. Здесь была родина ямса, хлебного дерева, мангустана, бананов, дуриана и, возможно, кокосовой пальмы. Тропическое садоводство получило отсю­да своих важнейших представителей. В Индонезийском очаге взяты в культуру такие важные пряные растения, как черный перец, кардамон, гвоздичное де­рево, мускатный орех.

Мексиканский центр включает боль­шую часть территории Центральной Америки. Отсюда человечество получило маис (кукурузу), обыкновенную фасоль, красный стручковый перец, хлопчатники Нового света (так называемые упленды), махорку и, вероятно, папайю, или дын­ное дерево.

Перуанский (Южноамериканский) центр занимает территорию Перу, Эквадо­ра, Боливии, Чили, отчасти Бразилии. Из этого очага в культуру взяты картофель, томат, длинноволокнистый «египетский» хлопчатник, ананас и табак. В новейшее время отсюда вывезено и окультурено хинное дерево.

Западносуданский центр расположен на части территории тропической Африки. Отсюда началась культура масличной пальмы, орехов кола, ряда тропических зернобобовых.

Около 30% всех выпускаемых меди­цинских препаратов готовят из лекар­ственного растительного сырья. Источни­ком сырья служат как дикорастущие, так и культивируемые растения. Это опреде­ляет целый комплекс проблем, в которых провизор обязан квалифицированно разо­браться. Прежде всего, он должен уметь узнавать и характеризовать растения, что делает строго необходимым хорошее знание их морфологии и система­тики. Подлинность лекарственного расти­тельного сырья в процессе фармакогностического анализа определяется на основе изучения различных макроскопических и микроскопических признаков. Обяза­тельным разделом всех стандартов, регу­лирующих качество лекарственного сы­рья, является подробная макроскопиче­ская и микроскопическая характеристики. Макроскопический анализ предполагает хорошее знание морфологии растений и владение соответствующей ботаниче­ской терминологией. При микроскопиче­ском анализе провизоры-аналитики изу­чают растительное сырье анатомически. В этом случае им помогает знание анато­мии растений. К анатомическим исследо­ваниям объектов нередко прибегают при судебно-медицинских экспертизах в тех случаях, когда на месте преступления об­наруживаются растительные остатки.

Изучение физиологии растений позво­ляет понять суть процессов, которые при­водят к образованию в растениях продук­тов первичного и вторичного обмена (метаболизма). Многие из них оказы­ваются фармакологически активными и используются в медицинской прак­тике. С культивированием лекарственных растений провизор сталкивается относи­тельно редко, но заготовки дикорастуще­го лекарственного растительного сырья осуществляются многими аптеками. Поэтому знание флоры региона необходимо для пра­вильного планирования и организации заготовок. В последние десятилетия различные причины привели к истощению главней­ших естественных ресурсов ряда лекарственных расте­ний в традиционных районах заготовок. Актуальными сделались ресурсные иссле­дования по выявлению новых промыш­ленных массивов лекарственных растений и инвентаризация запасов лекарственного растительного сырья. Эти работы осуществляют провизоры-фармакогносты. Выполнение ресурсных исследований не­возможно без знания местной флоры, элементов ботанической географии и вла­дения основными геоботаническими ме­тодами. Наконец, провизор обязан вы­полнять главнейшие природоохранные мероприятия, которые должны учиты­ваться при сборе растительного сырья. Это залог длительной эксплуатации за­рослей дикорастущих лекарственных рас­тений.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 757; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.