Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Число е




Здесь мы докажем существование числа, играющего исключительную роль в природе и математике - числа е. Это число определяется как .

Утв. 1. Последовательность возрастает с ростом n.

Док-во. По формуле бинома Ньютона

Эта сумма содержит ровно n +1 член. Если перейти от n к n +1, то количество слагаемых увеличится на 1 и каждое слагаемое возрастётÞ an +1> an.

Утв. 2. Последовательность ограничена.

Док-во. Оценим величину сверху. Каждое слагаемое в полученной сумме оценивается величиной . Тогда вся сумма

Итак, последовательность возрастает и ограниченаÞона имеет предел. Этот предел и определяет число е, , зашитое во все природные явления столь же фундаментально, как и число p.

 

4.4. Предел функции одной переменной.

4.4.1. Предел функции.

В этом разделе мы изучим основное понятие математического анализа - предел функции. Все остальные объекты, которые встречаются в анализе (производная, интеграл и т.д.) определяются с помощью предела.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.