Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вычислительный метод

Монографический метод

Идея монографического метода принадлежит немецкому педагогу А.В.Грубе (19в., «Руководство к счислению в элементарной школе…»).

Его последователи:

- немецкий педагог В.А. Лай (к. 19 – н. 20в.) в «Руководстве к первоначальному обучению арифметике…»,

- В.А. Евтушевский (к. 19в.) «Методика арифметики»,

- Д.Л. Волковский (в 1914 г.) этот метод перенес в детский сад, издав книгу «Детский мир в числах».

В переводе монографический метод означает «описание числа». Суть метода состоит в следующем: т.к. дети способны воспроизвести группу предметов в пределах 100, то каждое число изучается путём рассматривания соответствующего количества точек (или чёрточек), сравнивается с другими числами (из каких чисел оно состоит, сколько раз в него вмещается то или иное число, на сколько оно больше или меньше других чисел). Арифметическим действиям детей не обучают, т.к. считается, что они сами вытекают из знания детьми состава чисел. Весь изучаемый материал располагался по числам и изучались все действия для каждого числа.

По сравнению с Грубе, Лай использовал специальные числовые фигуры, т.е. каждое число он изображал в удобной для восприятия форме, и считал, это если дети легко воспроизводят эти числовые фигуры, то они запомнили соответствующее число.

Евтушевский этот метод упростил, предлагая вести обучение в пределах 20, а не 100.

Волковский рекомендовал этот метод для детей до школы, предлагая вести обучение в пределах 10.

В современной методике ознакомления с числами использованы положительные стороны монографического метода: воспроизведение групп предметов, применение числовых фигур и счётных карточек, изучение состав числа.

Вычислительный метод по-другому называется «метод изучения действий», который предполагает научить детей не только вычислять, но и понимать смысл этих действий. Детей обучали считать конкретные множества, усваивать нумерацию, а затем переводили к изучению арифметических действий и вычислительных приёмов. Т. е. обучение шло от практических действий с множествами к усвоению операции счёта и пониманию числа, а затем - усвоению понятия натурального ряда чисел и пониманию построения десятичной системы счисления. Обучение и пояснение велось по десятичным концентрам (сначала в пределах первого десятка, затем по аналогии – в пределах 20 и т.д.).

Этот метод предложили в конце 19 в.: П.С. Гурьев в России, А. Дистервег в Германии («Руководство к преподаванию арифметики малолетним детям»).

Их последователи в России: А.И. Гольденберг, С.И. Шохор-Троцкий, Ф.И. Егоров.

В современной методике ознакомления с числами использованы положительные стороны вычислительного метода: число как результат счёта, образование чисел на основе сравнения двух совокупностей и установления между ними взаимно однозначного соответствия, увеличение или уменьшение одного из них на 1, освоение действий сложения и вычитания.

Обучение математике в первых дошкольных учреждениях

<== предыдущая лекция | следующая лекция ==>
Из истории развития методики формирования математических представлений у детей дошкольного возраста | Е.И. Тихеева об обучении математике дошкольников
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 5510; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.