КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Производная функций комплексного переменного
Определение. Производной от однозначной функции w = f(z) в точке z называется предел:
Определение. Функция f(z), имеющая непрерывную производную в любой точке области D называется аналитической функцией на этой области.
Правила дифференцирования функций комплексного аргумента не отличаются от правил дифференцирования функций действительной переменной. Аналогично определяются производные основных функций таких как синус, косинус, тангенс и котангенс, степенная функция и т.д. Производные гиперболических функций определяются по формулам:
Вывод правил интегрирования, значений производных основных функций ничем не отличается от аналогичных операций с функциями действительного аргумента, поэтому подробно рассматривать их не будем.
Условия Коши – Римана. (Бернхард Риман (1826 – 1866) – немецкий математик)
Рассмотрим функцию комплексной переменной , определенную на некоторой области и имеющую в какой – либо точке этой области производную
Стремление к нулю Dz®0 может осуществляться в следующих случаях:
1) 2)
В первом случае:
Во втором случае:
Тогда должны выполняться равенства:
Эти равенства называются условиями Коши – Римана, хотя еще раньше они были получены Эйлером и Даламбером.
Теорема. Если функция имеет производную в точке z = x + iy, то ее действительные компоненты u и v имеют в точке (х, у) частные производные первого порядка, удовлетворяющие условию Коши – Римана.
Также справедлива и обратная теорема. На основании этих теорем можно сделать вывод, что из существования производной следует непрерывность функции.
Теорема. Для того, чтобы функция была аналитической на некоторой области необходимо и достаточно, чтобы частные производные первого прядка функций u и v были непрерывны на этой области и выполнялись условия Коши – Римана.
Дата добавления: 2014-01-11; Просмотров: 377; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |