Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Неорганические теплоизоляционные материалы и изделия

Классификация и основные требования

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

Теплоизоляционными называют материалы, имеющие теплопро­водность не более 0,175 Вт/(м ·°С) при 25 °С и предназначенные для снижения тепловых потоков в зданиях, технологическом оборудовании, трубопро­водах, тепловых и холодильных промышленных установках. Приме­нение таких материалов в конструкциях позволяет весьма существен­но экономить тепловую энергию, дефицитность и стоимость которой постоянно растут.

Теплоизоляционные материалы и изделия классифицируют:

по виду основного исходного сырья (неорганические и органические);

структуре (волокнистые, ячеистые, зернистые, сыпучие);

форме – рыхлые (вата, перлит), плоские (плиты, маты, войлок), фасонные (цилиндры, полуцилиндры, сегменты и др.) и шнуровые (шнуры, жгу­ты);

сжимаемости – мягкие (М), имеющие относительную деформацию свыше 30 % при удельной нагрузке 2 кПа; полужесткие (ПЖ) – соответственно 6-30 %; жесткие (Ж) – не более 6 %. Кроме того, различают изделия повышенной жесткости, имеющие относительную деформацию до 10 % при удельной нагрузке 4 кПа, и твердые – до 10 % при удельной нагрузке 10 кПа;

возгораемости (горючести) – несгораемые, трудносгораемые и сгораемые.

Тепловой поток через пористые строи­тельные материалы представляет собой сумму кондукционного (теплопередача) lт, конвекционного lк и радиационного (излучение) lр потоков. Чем мельче поры и чем их больше, тем меньше теплопроводность изделия (рис. 11). Стремление к замкнутой пористости отличает структуру теплоизоляционных материалов от структуры звукопоглощающих, кото­рые должны иметь определенное количество открытых пор. Это принципиальное отличие необходимо иметь в виду, так как часто для производства теплоизоляционных и звукопоглощающих изделий ис­пользуются одни и те же исходные материалы. Минимальную теплопроводность имеет сухой воздух, заключен­ный в мелких замкнутых порах, в которых практически невозможен конвективный теплообмен, а именно 0,023 Вт/(м × °С). Теплопроводность скелета материала с аморфной структурой сущест­венно ниже, чем с кристаллической. Таким образом, структура теплоизоляционного материала и изделия должна иметь скелет аморфного строения, предельно насыщенный мелкими замкнутыми порами или тонкими воздушными слоями.

Рис.11. Зависимость теплопроводности от толщины воздушных прослоек  
 
Для теплопроводности имеют огромное значение влажность ма­териала, так как теплопроводность воды равна 0,58 Вт/(м × °С), что в 25 раз выше, чем теплопроводность сухого воздуха, содержащегося в мелких замкнутых порах материала.

В случае замерзания воды в порах теплопроводность льда соста­-

вит 2,32 Вт/(м × °С), что на два порядка выше значения теплопроводно­сти сухого воздуха и в 4 раза больше теплопроводности воды.

На практике используют различные способы создания высокопористого строения материала. Для получения материалов ячеистого строения (ячеистые бетоны, пеностекло, пористые пласт­массы) используют способы газовыделения и пенообразования.

Способ высокого водозатворения состоит в применении большого количества воды при получении формовочных масс (например, из трепела, диатомита); последующее испарение воды при сушке и об­жиге формовочных изделий способствует образованию воздушных пор. Этот способ часто сочетается с введением выгорающих добавок (углесодержащих техногенных отходов, древесных опилок и др.).

Создание волокнистого каркаса – основной способ образования пористости у таких материалов, как минеральная вата и изделия из нее, древесно­волокнистые плиты и т.п.

Высокопористое строение закрепляется путем затвердевания или отверждения (соответственно у неорганических и органических материалов).

Теплопроводность – основной качественный показатель теплоизоляционных материалов. По этому показателю они делятся на три класса: класс А – малотеплопроводные – до 0,058 Вт/(м × °С); класс Б – среднетеплопроводные – 0,058-0,116 Вт/(м × °С) и класс В – повышенной теплопроводности – не более 0,18 Вт/(м × °С).

Толщину однородной ограждающей конструкции в зависимости от ее требуемого тер­мического сопротивления и теплопроводности материала определяют по формуле

d = Rt × l,

где d – толщина конструкции, м; Rt – термическое сопротивление, (м × °С)/Вт; l – теплопроводность материала, Вт/(м × °С).

Теплопроводность материала связана с его плотностью (рис. 12).

 

 

Рис. 12. Зависимость теплопроводности теплоизоляционных материалов
от плотности:

1 – неорганические материалы; 2 – органические материалы

 

 

В настоящее время нормативные требования к энергозащите вновь строящихся и эксплуатируемых зданий значительно повышены. Только высокоэффективные теплоизоляционные материалы плотностью менее 200 кг/м3 и теплопроводностью не свыше 0,06 Вт/(м × °С) способны обеспечить достаточное снижение энергопотерь в строительстве.

Прочность теплоизоляционных материалов при сжатии срав­нительно невелика – 0,2-2,5 МПа. Основной прочностной характе­ристикой волокнистых материалов (плит, скорлуп, сегментов) яв­ляется предел прочности при изгибе. У неорганических материалов он составляет 0,15-0,5 МПа; у древесных плит – 0,4-2 МПа. Гибкие теплоизоляционные материалы (минераловатные маты, войлок) испытывают на растяжение. Прочность материала должна обеспечивать его сохранность при перевозке, складировании, монтаже и, конечно, в эксплуатационных условиях.

Деформативные свойства теплоизоляционных материалов характеризуются сжимаемостью (в виде относительной деформации в процентах) и гибкостью.

Водопоглощение не только ухудшает теплоизоляционные свойства пористого материала, но также понижает его прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, отличаются небольшим водопоглощением. Для снижения водопоглощения при изготовлении материалов с большой открытой пористостью вводят гидрофобизующие добавки.

Газо- и паропроницаемость учитывают при применении теплоизоляционных материалов в ог­раждающих конструкциях. С одной стороны, теплоизоляция не должна препятствовать возду­хообмену жилых помещений с окружающей средой, происходящему через наружные стены зданий. С другой стороны, теплоизоляцию стен защищают от увлажнения с помощью гидроизоляции, устраиваемой с «теплой» стороны.

Огнестойкость связана со сгораемостью материала, т.е. его спо­собностью воспламеняться и гореть. Сгораемые материалы можно применять только при осуществлении мероприятий по защите от воз­горания. Возгораемость материалов определяется при воздействии тем­пературы 800-850 °С и выдержке в течение 20 мин. Предельная температура применения не должна изменять экс­плуатационные свойства материала.

Химическая и биологическая стойкость пористых теплоизоляционных материалов должна препятствовать проникновению в них агрессивных газов и паров, находящихся в окружающей среде. Органические теплоизоляционные материалы и связующие (клей, крахмал) должны обладать биологической стойкостью, т.е. сопротив­ляться действию микроорганизмов, домовых грибов, насекомых (му­равьев, термитов).

Минераловатные изделия. Минеральная вата – волокнистый бесформенный материал, состоящий из тонких стекловидных волокон диаметром 5-15 мкм, которые полу­чают из расплава легкоплавких горных пород (мергелей, доломи­тов, базальтов и др.), металлургических и топливных шлаков и их смесей. Наилучшим видом минерального волокна является базальтовое волокно, которое выдерживает температуру до 1000 °С, обладает стойкостью к коррозии. Широко используются стеклянные волокна. Минераловатные изделия на основе указанных волокон различаются как по структуре и внешнему виду (плиты, маты, скорлупы и т.д.), так и по эксплуатационным свойствам (прочности, сжимаемости, теплопроводности, стойкости и др.).

Маты в рулонах выпускают с синтетическим связующим (плотность 35-75 кг/м3); прошивные с металли­ческими, тканевыми, бумажными обкладками, а также с обкладкой из стеклохолста (100-200 кг/м3); из штапельного стекловолокна (25-50 кг/м3); из непрерывного стекловолокна (80-120 кг/м3); в ви­де холста из базальтового волокна (15-20 кг/м3). Прошивные маты – это гибкие изделия из слоя прошитого во­локнистого материала. Последнее время используются вертикально-слоистые гибкие маты, состоящие из приклеенных к покровному ма­териалу полос волокнистых плит при преимущественно перпендику­лярном расположении волокон. Гибкие изделия, состоящие из слоя волокнистого материала со связующим веществом, называются вой­локом.

Полужесткие и мягкие плиты изготовляют с синтетическим, битумным и крахмальным связующим. Изделия (пли­ты, маты) с синтетическим связующим имеют меньшую плотность, более прочны и привлекательны на вид по срав­нению с изделиями на битумном связующем. Плотность плит 35-250 кг/м3, теплопроводность 0,041-0,07 Вт/(м × °С). Жесткие плиты и фасонные изделия (скорлупы, сегменты) выпускают с синтетическим, битумным и неорганическим связующим (цементом, глиной, жидким стеклом и др.). Для повыше­ния прочности и снижения количества связующего в состав изделий вводят коротковолокнистый асбест. Плиты толщиной 40-100 мм выпускают плотностью 100-300 кг/м3 и теплопроводностью 0,051-0,135 Вт/(м × °С). Твердые плиты, имеющие пониженную сжимаемость, изготовляют на синтетическом связующем (фенолоспирте, растворе или дисперсии карбамидного полимера и др.). Прочность на сжатие минераловатных изделий повышается с ростом количества вертикально ориентированных во­локон. Прочность на сжатие при 10 %-ной деформации в
100 кПа мо­жет быть достигнута для минераловатных плит плотностью 150-160 кг/м3 при содержании вертикально ориентированных волокон около 65 %; для плит плотностью 180-190 кг/м3 – около 55 %. Минераловатные изделия с гофрированной структурой, со­держащие до 30 % ориентированных в вертикальном направлении волокон, имеют плотность 140-200 кг/м3. По сравнению с плитами с горизонтальной ориентацией волокон гофрированные плиты отлича­ются меньшей деформативностью и повышенной в 1,7-2,5 раза проч­ностью.

Керамические теплоизоляторы изготовляют путем формования, сушки и обжига глинистого и другого минерального сырья (диатомит, трепел, огнеупорная глина, перлит). По сравнению с другими теплоизо­ляционными материалами они имеют высокую прочность и температуру применения (до 900 °С). Большая пористость создается путем введения в формовочную массу газообразователей, выгораю­щих добавок.

Ячеистое стекло (пеностекло) вырабатывают из стекольного боя, либо используют те же сырьевые материалы, что и для производства других видов стекла: кварцевый песок, известняк, соду и сульфат натрия. При спекании порошка стекольного боя с газообразователями – коксом и известняком – выделяется углекислый газ, образующий поры. Газообразующими добавками могут служить так­же мел или карбиды кальция и кремния. Ячеистое стекло имеет в материале стенок крупных пор мель­чайшие микропоры, обусловливающие малую теплопроводность при достаточно высоких прочности, водостойкости и морозостойкости. Ячеистое стекло – несгораемый, экологически чистый материал с достаточно высокой температуростойкостью (для щелочного – 400 °С, для бесщелочного – до 600 °С); хорошо обрабаты­вается. Применяют для теплоизоляции стен зданий, тепловых сетей при их под­земной бесканальной прокладке, для теплоизоляции стен, перекры­тий, кровель, в конструкциях холодильников.

Вулканитовые изделия изготовляют из смеси молотого диа­томита или трепела (около 60 %), воздушной извести (20 %) и асбеста (20 %). Отформованные изделия подвергают автоклавной обработке, которая ускоряет химическое взаимодействие между кремнеземи­стым компонентом и воздушной известью, приводящее к образова­нию гидросиликатов кальция.

Теплоизоляционные бетоны. Крупнопористые легкие бетоны готовят на основе пористого заполнителя – вспученного перли­та, легкого керамзита или вермикулита и минерального вяжущего. Их плотность может составлять 150-300 кг/м3. Теплоизоляционные ячеистые бето­ны (газо- и пенобетоны) получают плотностью от 150 до 500 кг/м3. Эти бетоны имеют низкую теплопроводность, достаточную марку по прочности, сравнительно низкое водопоглощение. Они морозостойки, обладают хорошей гвоздимостью, огнестойкостью. Теплоизоляционные бетоны используют для утепления наружных ограждений как в виде сборных плит, так и в качестве монолита.

Зернистые материалы (теплоизоляционные засы­пки). В виде пористого песка с насыпной плотностью 50-120 кг/м3 и тепло­проводностью 0,04-0,075 Вт/(м × °С) при температуре до 900 °С применяют вспученный перлит и вспученный вермикулит (предельная температура применения 1100 °С), измель­ченные диатомиты и трепелы (насыпная плотность 400-700 кг/м3 и теплопроводность 0,11-0,18 Вт/(м × °С)). При температурах до 450-600 °С применяют гранулированную и стеклянную вату, дробленую пемзу и вулканический туф, топливные шлаки, получаемые при сжигании кускового топлива, топливные зо­лы от сжигания пылевидного топлива, доменные гранулированные шлаки.

Стеклопор получают путем грануляции и вспучивания жидкого стекла с минеральными добавками (мелом, молотым песком, золой ТЭС и др.). Технологический процесс включает производство гранулята – стеклобисера и его низкотемпературное (при 320-360 °С) вспучивание. Стеклопор выпускают трех марок: СЛ (насыпная плотность 5-40 кг/м3 и теплопроводность 0,028-0,035 Вт/(м × °С); Л (соответственно 40-80 кг/м3 и 0,032- 0,04 Вт/(м × °С); Т (соответственно 80-120 кг/м3 и 0,038-0,05 Вт/(м × °С). В сочетании с различными связующими стеклопор используют для изготовления штучной, мастичной и заливочной теплоизоляции. Наиболее эффективно введение стеклопора в наполненные пенопласты, так как позволяет снизить расход полимера и значительно повысить их теплостойкость.

<== предыдущая лекция | следующая лекция ==>
Кровельные и гидроизоляционные материалы на основе полимеров | Органические теплоизоляционные материалы и изделия
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1265; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.