Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение теоремы Гаусса для расчета напряженности электростатического поля

 

  1. Поле равномерно заряженной бесконечной плоскости с поверхностной плотностью зарядов + s.

Пусть поверхностная плотность зарядов или заряд, приходящийся на единицу поверхности . Силовые линии поля перпендикулярны этой плоскости и направлены от нее в обе стороны (рис.1.10).

Построим замкнутую цилиндрическую поверхность с основаниями dS, парал­лельными заряженной поверхности и образующей, параллельной вектору . Сле­дуя последнему условию, поток напряженности ФЕ через боковую поверхность ци­линдра равен нулю. Поэтому полный поток через цилиндрическую поверхность ра­вен сумме потоков сквозь его основания. Так как вектор перпендикулярен осно­ваниям, Еn=Е и суммарный поток ФЕ можно записать ФЕ=2ЕdS.

Рис.1.10. Определение на­пряженности поля беско­нечной заряженной плос­кости.

Согласно теореме Гаусса , где - заряд, охватываемый цилиндрической по­верхностью. Таким образом

, .

Если плоскость помещена в среду с относительной ди­электрической проницаемостью e, то напряженность электростатического поля, соз­даваемая плоскостью, равна .

Из формулы следует, что Е не зависит от расстояния между плоскостью и точкой на­блюдения, т.е. поле равномерно заряженной бесконечной плоскости однородно.

  1. Поле двух бесконечных разноименно заряженных плоскостей.
Рис.1.11. Определение на­пряженности поля двух параллельных разноимен­но заряженных плоско­стей.

На рис.1.11 перпендикулярно чертежу располо­же­ны две такие плоскости с поверхностными плотно­стями за­рядов + s и - s. Силовые линии плоскостей перпенди­ку­лярны им и параллельны между собой. Силовые ли­нии выходят из плоскости + s и входят в плоскость ‑ s. На ри­сунке сплошными стрелками изо­бражено поле плоскости + s и пунктирными - поле плоскости - s.

Напряженности полей обеих плоскостей равны по абсолютной величине . Однако, справа и слева от плоскостей напряженности и направлены проти­во­положно, поэтому суммарная Е=0 и поле отсутствует. В области между плоскос­тями и направлены одинаково, поэтому .

1.10. Работа сил электростатического поля при перемещении заряда.

При перемещении заряда в электростатическом поле, действующие на заряд кулоновские силы, совершают работу. Пусть заряд q0>0 перемещается в поле заряда q>0 из точки С в точку В вдоль произвольной траектории (рис.1.12). На q0 действует кулоновская сила

. При элементарном перемещении заряда d l, эта сила совер­шает работу dA

, где a - угол между векторами и . Величина d l cosa=dr является про­екцией вектора на направление силы . Таким образом, dA=Fdr, . Полная работа по перемещению заряда из точки С в В определяется интегра­лом , где r1 и r2 - расстояния заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении электрического заряда q0 в поле точеч­ного заряда q, не зависит от формы траектории перемещения, а зависит только от начальной и конечной точки перемещения.

В разделе динамики показано, что поле, удовлетворяющее этому условию, яв­ляется потенциальным. Следовательно, электростатическое поле точечного заряда - потенциальное, а действующие в нем силы - консервативные.

Если заряды q и q0 одного знака, то работа сил отталкивания будет положи­тельной при их удалении и отрицательной при их сближении (в последнем случае ра­боту совершают внешние силы). Если заряды q и q0 разноименные, то работа сил притяжения будет положительной при их сближении и отрицательной при удалении друг от друга (последнем случае работу также совершают внешние силы).

Пусть электростатическое поле, в котором перемещается заряд q0, создано сис­темой зарядов q1, q2,...,qn. Следовательно, на q0 действуют независимые силы , равнодействующая которых равна их векторной сумме. Работа А рав­но­действующей силы равна алгебраической сумме работ составляющих сил, , где ri1 и ri2 - начальное и конечное расстояния между зарядами qi и q0.

 

<== предыдущая лекция | следующая лекция ==>
Теорема Гаусса для электростатического поля в вакууме | Циркуляция вектора напряженности электростатического поля
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 457; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.