КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Работа выхода электрона из металла. Контактная разность потенциалов
Основные положения классической теории электропроводности металлов Опытные доказательства электронной проводимости металлов. ЭЛЕКТРИЧЕСКИЕ ТОКИ В МЕТАЛЛАХ, ВАКУУМЕ И ПОЛУПРОВОДНИКАХ Электронная теория проводимости металлов была впервые создана в 1900 г. немецким физиком П.Друде и впоследствии разработана нидерландским физиком Х.Лоренцем. Основным ее положением является то, что носителями тока в металлах служат свободные электроны. Это подтверждалось рядом классических опытов. В опыте К.Рикке (1901 г.) электрический ток в течение года пропускался через три последовательно соединенных металлических цилиндра (Cu, A l, Cu) с отшлифованными торцами одинакового радиуса. Общий заряд, прошедший через цилиндры, равнялся 3.5×106 Кл. Проведенное после этого взвешивание показало, что вес цилиндров не изменился, также не было обнаружено проникновения одного металла в другой. Следовательно, перенос заряда осуществлялся не ионами, а общими для всех металлов частицами - электронами. Для подтверждения этого положения необходимо было определить знак и величину удельного заряда q/m (заряда единицы массы) носителей тока. Идея опытов и их качественное воплощение принадлежит российским физикам Л.Мандельштаму и Н.Папалески (1913 г.). Если движущийся поступательно проводник резко остановить, то, подключенный к нему гальванометр зафиксирует кратковременный ток. Это объясняется тем, что носители тока не связаны жестко с кристаллической решеткой и при торможении продолжают двигаться по инерции. По направлению тока гальванометра было определено, что знак заряда носителя тока - отрицательный. Согласно численному расчету, удельный заряд носителя тока оказался приблизительно равным удельному заряду электрона. К таким же результатам привели опыты Ч.Стюарта и Т.Толмена (1916 г.), в которых быстрые крутильные колебания катушки, соединенной с чувствительным гальванометром, создавали переменный электрический ток. Таким образом, было доказано, что носителями электрического тока в металлах являются свободные электроны. Свободные электроны - это валентные электроны атомов металла, наиболее слабо связанные с ядрами атомов. Они легко отрываются, переходят от одного атома к другому и являются как бы “обобществленными”. Атомы, оставшиеся без нескольких электроонов ‑ положительные ионы, колеблются около некоторых точек равновесия, называемых узлами кристаллической решетки, и мешают свободному движению электронов. С позиций классической электронной теории высокая электропроводность металлов обусловлена наличием огромного числа свободных электронов, движение которых подчиняется законам классической механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие их с положительными ионами сводят только к соударениям. Иными словами, электроны проводимости рассматриваются как электронный газ, подобный одноатомному, идеальному газу. Такой электронный газ должен подчиняться всем законам идеального газа. Следовательно, средняя кинетическая энергия теплового движения электрона будет равна , где - масса электрона, - его среднеквадратичная скорость, k - постоянная Больцмана, Т - термодинамическая температура. Отсюда при Т=300 К среднеквадратичная скорость теплового движения электронов »105 м/с. Хаотичное тепловое движение электронов не может привести к возникновению электрического тока, но под действием внешнего электрического поля в проводнике возникает упорядоченное движение электронов со скоростью . Оценить величину можно из ранее выведенного соотношения , где j - плотность тока, - концентрация электронов, e - заряд электрона. Как показывает расчет, »8×10-4 м/с. Чрезвычайно малое значение величины по сравнению с величиной объясняется весьма частыми столкновениями электронов с ионами решетки. Казалось бы, полученный результат для противоречит тому факту, что передача электрического сигнала на очень большие расстояния происходит практически мгновенно. Но дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью 3×108 м/с (скорость света). Поэтому упорядоченное движение электронов со скоростью под действием поля возникнет практически сразу же на всем протяжении цепи, что и обеспечивает мгновенную передачу сигнала. На базе классической электронной теории были выведены рассмотренные выше основные законы электрического тока - законы Ома и Джоуля-Ленца в дифференциальной форме и . Кроме того, классическая теория дала качественное объяснение закону Видемана-Франца. В 1853 г. И.Видеман и Ф.Франц установили, что при определенной температуре отношение коэффициента теплопроводности l к удельной проводимости g одинаково для всех металлов. Закон Видемана-Франца имеет вид , где b - постоянная, не зависящая от природы металла. Классическая электронная теория объясняет и эту закономерность. Электроны проводимости, перемещаясь в металле, переносят с собой не только электрический заряд, но и кинетическую энергию беспорядочного теплового движения. Поэтому те металлы, которые хорошо проводят электрический ток, являются хорошими проводниками тепла. Классическая электронная теория качественно объяснила природу электрического сопротивления металлов. Во внешнем поле упорядоченное движение электронов нарушается их соударениями с положительными ионами решетки. Между двумя столкновениями электрон движется ускоренно и приобретает энергию, которую при последующем столкновении отдает иону. Можно считать, что движение электрона в металле происходит с трением, подобным внутреннему трению в газах. Это трение и создает сопротивление металла. Вместе с тем классическая теория встретилась с существенными затруднениями. Перечислим некоторые из них: 1. Несоответствие теории и эксперимента возникло при расчете теплоемкости металлов. Согласно кинетической теории молярная теплоемкость металлов должна складываться из теплоемкости атомов и теплоемкости свободных электронов. Так как атомы в твердом теле совершают только колебательные движения, то их молярная теплоемкость равна С=3R (R=8.31 Дж/(моль×К) - молярная газовая постоянная); свободные электроны двигаются только поступательно и их молярная теплоемкость равна С=3/2R. Общая теплоемкость должна быть С»4.5R, но согласно опытным данным С=3R. 2. По расчетам электронной теории, сопротивление R должно быть пропорциональным , где Т - термодинамическая температура. Согласно опытным данным, R~Т. 3. Полученные опытным путем значения электропроводности g дают для средней длины свободного пробега электронов в металлах величину порядка сотен междоузельных расстояний. Это гораздо больше, чем по классической теории. Расхождение теории с опытом объясняется тем, что движение электронов в металле подчиняется не законам классической механики, а законам квантовой механики. Достоинством классической электронной теории являются простота, наглядность и правильность многих качественных ее результатов. При комнатной температуре практически все свободные электроны находятся внутри металла, так как их удерживает притяжение положительных ионов. Однако отдельные электроны с достаточно большой кинетической энергией могут выйти из металла в окружающее свободное пространство (например, в вакуум). При этом они совершают работу против сил притяжения со стороны избыточного положительного заряда, возникшего в металле после их вылета, и против сил отталкивания от электронов, вылетевших ранее. С ростом Т количество электронов, имеющих достаточную кинетическую энергию и покидающих металл, увеличивается. Вблизи поверхности возникает «электронное облако», которое вместе с поверхностным слоем положительных ионов образует двойной электрический слой толщиной 10-10-10-9 м. Поле этого слоя препятствует выходу следующих электронов. Разность потенциалов Dj слоя называется поверхностным скачком потенциала. Работу, которую должен совершить электрон при выходе из металла, называют работой выхода А: . Работу выхода принято измерять в электрон-вольтах (эВ). 1эВ - работа перемещения электрона в электрическом поле между точками с разностью потенциалов в 1В (1эВ=1.6×10-19 Дж). Работа выхода электрона зависит от химической природы металла и чистоты его поверхности и не зависит от температуры. Для чистых металлов величина работы порядка нескольких эВ. В 1797 г. итальянский физик Вольта обнаружил сходное явление и при контакте двух металлов, он установил, что при соприкосновении двух разнородных металлов между ними возникает разность потенциалов, зависящая от их химического состава и температуры (первый закон Вольты). Эта разность потенциалов называется контактной.
Для объяснения этого явления рассмотрим контакт двух различных металлов 1 и 2, имеющих работы выхода А1 и А2, причем А1<А2. Очевидно, что свободным электронам второго металла труднее покинуть его пределы, чем электронам первого металла. Поэтому при хаотическом тепловом движении количество свободных электронов, переходящих из первого металла во второй в единицу времени будет больше, чем из второго в первый. В результате этого первый металл зарядится положительно, второй - отрицательно (рис.3.1). Возникающая разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейший переход электронов из 1 в 2. Передвижение электронов прекратится, когда разность потенциалов поля станет такой величины, что работа по перемещению электрона внутри поля сравняется с разностью работ выхода: или , где е - абсолютная величина заряда электрона. Значение составляет обычно около 1В. Второй причиной появления контактной разности потенциалов между металлами 1 и 2 является различная концентрация в них свободных электронов n01 и n02. Свободные электроны в металле принято рассматривать как электронный газ, который подобен идеальному газу и подчиняется тем же законам. Давление идеального газа равно:, где - концентрация молекул, k - постоянная Больцмана, Т - абсолютная температура. Пусть >, тогда р1>р2, т.е. давление электронного газа в первом металле больше, чем во втором. Под действием перепада давления электроны будут переходить из первого металла во второй больше, чем в обратном направлении. Процесс диффузионного перехода прекратится, когда возникающее электрическое поле двойного электрического слоя скомпенсирует своим противодействием перепад давления. В результате этого первый металл зарядится положительно, второй - отрицательно. Теоретический расчет возникающей разности потенциалов показал, что она зависит от концентрации свободных электронов и температуры Т и равна . При комнатной температуре значение имеет порядок 10-1 В. Таким образом, при контакте двух различных металлов между ними возникает контактная разность потенциалов . На основании опытных данных Вольтой был установлен второй закон: разность потенциалов на концах разомкнутой цепи, составленной из нескольких последовательно соединенных проводников, находящихся при одинаковой температуре, равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников.Пусть цепь состоит из четырех разнородных проводников, имеющих одинаковую температуру. Сумма контактных разностей потенциалов соприкасающихся пар будет равна , то есть не зависит от промежуточных проводников 2 и 3. Контактная электризация тел, т.е. возникновение между телами контактной разности потенциалов, встречается довольно часто и не только у металлов. Например, ею обусловлена электризация тел в процессе трения. При контакте двух диэлектриков внешние электроны атомов, расположенных у поверхности соприкосновения, переходят преимущественно на диэлектрик с меньшей диэлектрической проницаемостью e, то есть на диэлектрик, у которого внешние электроны прочнее связаны со своими атомами. При последующем разделении тел, одно из них (с большим значением e) заряжается положительно, другое - отрицательно. Контактная электризация имеет место в коллоидных растворах: жидкость и взвешенные в ней твердые частицы имеют заряды разного знака. При воздействии на коллоидный раствор электрическим полем, взвешенные частицы начинают двигаться вдоль силовых линий поля. Это явление называется электрофорезом. Электрофорез широко используется для выделения эмульсий из нефти, очистки фруктовых соков, удаления пыли и дыма из воздуха, разделения сложных белковых систем на компоненты и т.п. Контактной электризацией обусловлено и явление электроосмоса: перемещение жидкости в неподвижном пористом теле, помещенном в электрическое поле. Электроосмос применяется для сушки (холодная электросушка) волокнистых и пористых веществ, очистки воды, обезвоживания торфа и глины. Контактная разность потенциалов играет важную роль в работе электровакуумных приборов.
Дата добавления: 2014-01-11; Просмотров: 1461; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |