Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Преимущества системно-динамического моделирования

В системах поддержки принятия решений применение системной динамики позволяет объединить несколько функциональных пространств организации в одно целое и обеспечить организационный и количественный базис для выработки более эффективной управленческой политики.

Динамические модели при построении КИС

Системная динамика

Системная динамика - направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Особенное внимание уделяется компьютерному моделированию таких систем.

Основана в 1960 г. Дж.Форрестером

Джей Форрестер является основателем теории системной динамики. Он считал, что операционные исследования не дают точного представления о характере деятельности систем. Операционные исследования использовали лишь ограниченное число переменных, рассматривали их в линейной зависимости и не учитывали значения циклического характера изменений в системе. Системная динамика, наоборот, подчеркивала нелинейный характер деятельности системы и огромную роль петель обратной связи. Развитие системной динамики напрямую зависит от возрастающих возможностей современных компьютеров, без которых сложнейшие расчеты, включающие огромное количество переменных и бесчисленные возможности петлеобразных взаимодействий между ними, были бы невозможны.

 

 

На первое место по своей важности следует поставить осознание необходимости развития динамических информационных систем с обратной связью, которые появились уже после того, как подобные электромеханические, а затем и электронные системы стали широко применяться на практике.

Согласно теории системной динамики, системы состоят из множества переменных, которые взаимодействуют друг с другом средством петель обратной связи, которые в свою очередь могут взаимодействовать и между собой. Системные взаимодействия между петлями обратной связи составляют каркас системы. Именно этот каркас и определяет деятельность системы в целом. Обра́тная связь в кибернетике, теории управления, радиотехнике — это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы.

Система определяется границами, внутри которых заключаются все важные взаимодействующие элементы. Внутри системы определяются все петли положительной и отрицательной обратной связи. Для всех петель и взаимодействий между ними описываются количественные и качественные характеристики. В системе также определяются «точки приложения», в которых можно вмешаться в процессы и изменить поведение системы.

Философия системной динамики базируется на предположении, что поведение (или история развития во времени) организации главным образом определяется ее информационно-логической структурой. Она отражает не только физические и технологические аспекты производственных процессов, но, что гораздо важнее, политику и традиции, которые явно или неявно определяют процесс принятия решений в организации.

Такая структурная схема содержит источники усиления, временных задержек и информационных обратных связей, подобных тем, которые встречаются в сложных инженерных системах. Инженерные и управляющие системы, содержащие подобные элементы, генерируют сложные ответные реакции даже на относительно простые изменения системы или входного сигнала. Анализ больших нелинейных систем такого рода представляет трудную задачу даже для опытных инженеров-системотехников, не говоря уже о быстром и надежном перепроектировании (реинжениринге) таких систем. Тонкости и специфика, присущие области управления, делают эти проблемы еще более сложными. В этом случае структурная ориентация системной динамики представляет собой первый шаг в процессе замены хаоса порядком.

Другой аспект философии системной динамики заключается в предположении, что организация более эффективно представляется в терминах лежащих в ее основе потоков, нежели в терминах отдельных функций. Потоки людей, денег, материалов, заявок и оборудования, а также интегрированных потоков информации могут быть выявлены во всех организациях. Направленность на потоковую структуру заставляет аналитика естественным образом преодолевать внутриорганизационные границы.

Методология системной динамики была построена так, чтобы сделать применимой на практике философию развития. Для этого были использованы и модифицированы известные методы представления потоковых диаграмм, математического и имитационного моделирования. На основе схем сигнальных потоков, применяемых для анализа электронных систем, были разработаны причинно-следственные диаграммы для визуального представления текущей ситуации. Как следующий шаг, для большинства системно-динамических проектов были созданы формальные потоковые диаграммы, представляемые в виде систем дифференциальных уравнений. Как потоковые диаграммы, так и системы уравнений выражают управленческие связи в помощью двух категорий: накопителей и потоков. Накопители представляют собой такие объекты реального мира, в которых сосредотачиваются некоторые ресурсы: знания (идеи), фонды, источники рабочей силы и т.п. Потоки – это все активные компоненты системы: потоки усилий (попыток), информационные потоки, расходные платежи и т.п.

Если система управления представима в виде сети накопителей и потоков, то соответствующая системно-динамическая модель может быть реализована в виде компьютерной программы. С помощью такой программы можно провести экспериментальное тестирование предлагаемых изменений управленческой политики. Исследовательская группа из Массачусетского технологического института разработала компилятор DYNAMO. С помощью этого языка моделирования можно эффективно решать системы линейных и нелинейных алгебраических и дифференциальных уравнений, содержащих до нескольких тысяч переменных, при этом от пользователя не требуется глубоких знаний программирования. С появлением графических средств доступа язык моделирования DYNAMO, ранее более походивший на язык программирования высокого уровня, стал языком графического моделирования сложных динамических систем. В полном объеме его выразительные возможности реализованы в системе визуального моделирования “Ithink”, которая будет использована в дальнейшем изложении. Далее анализируются преимущества системно-динамического подхода к моделированию систем поддержки принятия решений и излагается методика построения таких моделей.

Важнейшие преимущества динамической модели:

 Возможность быстро просчитывать различные варианты будущего (моделировать сценарии), изменяя исходные данные, полученные экспертным путем.

 Выявление наиболее критических факторов (например, что важнее: динамика цен на сырьё или конкурентоспособность продукции конкурентов?), таким образом, можно ранжировать по степени важности угрозы и возможности, появляющиеся в моделируемой среде.

 Использование большого количества причинно-следственных связей между элементами имитационной модели, которые объективно существуют в моделируемой среде (например, рост курса доллара (причина) à уменьшение объёма импорта и увеличение экспорта (следствие) и т.д.).

 Наглядность вводимых данных и получаемых результатов.

Методология системной динамики включает качественную и количественную стадии. На качественной (квалитативной) стадии исследователь описывает модель и определяет характеристики взаимодействий. Здесь все зависит от ума, опыта и научной интуиции человека. На количественной стадии, в ходе компьютерной симуляции, исследователь определяет, насколько верна его модель и тестирует свои гипотезы о поведении системы.

Сильная сторона технологии системной динамики - универсальность применения, вытекающая из универсальности описаний многих реальных процессов дифференциальными уравнениями. Общее в этих процессах – это движение по подсистемам и во времени разного рода ресурсов: финансовых, материальных, в меньшей степени человеческих (как более трудно формализуемых ). Важно, что это движение ресурсов, контролируемое с точки зрения желаемых целей и недопущения выхода траектории движения за многочисленные ограничения. Интерактивность технологии позволяет вносить управляющие воздействия в нужном направлении, т.е. система операциональна.

Системно-динамический подход начинается с попытки понять ту систему причин, которая породила проблему и продолжает поддерживать ее. Для этого собираются необходимые данные из различных источников, включая литературу, информированных людей (менеджеров, потребителей, конкурентов, экспертов) и проводятся специальные количественные исследования. После того как элементарный анализ причин проблемы произведен, формальная модель считается построенной. Первоначально она представляется в виде логических диаграмм, отражающих причинно-следственные связи, которые затем преобразуются в сетевую модель, изображенную графическими средствами системы “Ithink”. Затем эта сетевая модель автоматически преобразуется в ее математический аналог – систему уравнений, которая решается численными методами, встроенными в систему “Ithink”. Полученное решение представляется в виде графиков и таблиц, которые подвергаются критическому анализу. В результате модель пересматривается (изменяются параметры некоторых узлов сети, добавляются новые узлы, устанавливаются новые или изменяются существовавшие ранее связи и т.д.), затем модель вновь анализируется и так до тех пор, пока она не станет в достаточной мере соответствовать реальной ситуации. После того как модель построена, в ней выделяются управляемые параметры и выбираются такие значения этих параметров, при которых проблема либо снимается, либо перестает быть критически важной.

В процессе моделирования постепенно углубляется понимание проблемы участвующими в нем людьми. Однако их интуиция о возможных последствиях предлагаемых управленческих решений часто оказывается менее надежной, чем подход, связанный с тщательным построением математической модели. И это не так удивительно, как может показаться на первый взгляд.

Системы управления содержат порой 100 и более переменных, о которых либо известно, что они зависят от других каким-либо нелинейным образом или предполагают существование такой зависимости. Поведение таких систем оказывается настолько сложным, что его понимание лежит вне возможностей человеческой интуиции. Компьютерное моделирование – одно из наиболее эффективных имеющихся в настоящее время средств для поддержки и уточнения человеческой интуиции. Хотя модель и не является совершенно точным представлением реальности, она может быть использована для принятия более обоснованных решений, чем те, которые мог бы принять человек. Это гибкое средство, которое усиливает возможности человека, использующего ее для более глубокого понимания проблемы.

Компьютерная модель принципиально отличается по сложности, точности и подробности от неформального субъективного объяснения или “вербальной” модели, которую человек обычно формирует для достижения поставленной цели. Преимущества компьютерной модели, сконструированной и используемой для поддержки принятия решений, состоят в следующем:

<== предыдущая лекция | следующая лекция ==>
 | Анализ систем с обратной связью
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 2815; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.