Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предмет и задачи геофизики. Основные геофизические понятия и определения

Читайте также:
  1. A. Этап 1. Анализ предметной области
  2. Cодержание и задачи планирования себестоимости
  3. I Социология общественного мнения. Предмет и объект.
  4. I. Задачи статистического изучения вариации
  5. I. Медико-гигиеническое воспитание, цели, задачи, принципы.
  6. I. Международная торговая практика широко использует такие понятия как мировые деньги, мировые рынки, мировые цены
  7. I. Основные задачи
  8. I. Основные категории страхования.
  9. I. Основные показатели вариации
  10. I. Основные положения
  11. I. Основные этапы развития знаний об эндокринных железах.
  12. I. Понятие и задачи методики расследования по горячим следам.

Региональная тектоника Северного Ледового океана

На ранней стадии развития внутреннюю структуру океана определяли две платформы: Баренцево-морская и Гипербарейская, которые принадлежали различным сегментам земли Атлантическому и Тихоокеанскому. Между ними располагался разрыв, глубоко проникающий в земную кору и мантию. Раздвиговые процессы и растяжения разрушили прилегающие платформы и создали хребет Гаккеля и сопряженные с ним впадины Нансена и Амундсена. Хребет Гаккеля – это СОХ, а впадины это глубоководные впадины возникшие в результате раздвига литосферных плит.

Меридиональные глубинные разломы прорезают материковый склон, материковую отмель и определяют конфигурацию. Северный Ледовый океан отличается от других океанов: у него площадь окраин материков составляет 75%, шельф – 50%, отсутствует переходная зона, ложе океана составляет 23% всей площади, СОХи занимают 3% площади океана. Площадь Сев. Ледовитого океана в 13 раз меньше Тихого. Его лишь по традиции можно считать океаном, но не по геологическому строению.

 

 

 

Основные вопросы, рассматриваемые на лекции:

1. Предмет, цель и задачи науки геофизики.

2. Место геофизики среди наук о Земле.

3. Основные геофизические понятия и определения.

4. Методы геофизических исследований.

 

1. Предмет, цель и задачи науки геофизики.Геофизика (от греч. ge–Земля и phisis–природа)– наука о строении, физических свойствах и процессах, про­исходящих в твердой, жидкой и газообразной оболочках-Земли. Цель геофизических исследований состоит в получении наиболее достоверных сведений о строении недр земли, ее водной и воздушных оболочек, в изучении происхождения и развития нашей планеты.

В круг вопросов геофизики входит изучение происхож­дения, эволюции и возраста нашей планеты в целом и от­дельных ее геосфер, определение массы и плотности Земли, ее внутреннего строения и состояния, физических свойств, физических и физико-химических процессов, происходящих в твердой, жидкой (гидросфера) и газообразной (атмосфера) оболочках. Геофизика, находясь на стыке точных и естествен­ных наук (физики, математики, химии, астрономии, геогра­фии, геологии и др.), рассматрвает Землю как единое сложное и непрерывно меняющееся физическое тело, являющееся составной частью Солнечной системы и взаимодействующее с ней.

Объектом исследований геофизики является земной шар в целом с его твердой оболочкой, морями и океанами, поверхностными и подземными водами, атмосферой и ближним космосом.

Физико-математические основы геофизики, заложенные трудами И. Ньютона, М.В. Ломоносова, Г.В. Рихмана, В. Франклина, Ш. Кулона, А. Лежандра, П. Лапласа, С. Пуассона, К. Гаусса, Д Грина, А.В. Остроградского, А. Беккереля, Э. Вихерта, Б.Б. Голицина и др. Роль геофизики в изучении геосфер Земли. Связь экологии и геофи­зики.



2. Место геофизики среди наук о Земле.В связи со специфическими особенностями изучения сос­тава вещества и строения каждой из трех основных геосфер Земли и разнообразием происходящих в них физических процессов и явлений геофизика в настоящее время подразде­ляется на три крупных обособившихся раздела, соответствующих этим геосферам, – физику твердой Земли, или физику твердого тела Земли, физику гидросферы, или гидрофизику, и физику атмосферы, и ближнего космоса.

Физика твердого тела Земли (ее часто называют просто физикой Земли) изучает механизм происхождения и развития Земли в целом и отдельных геосфер, а также ее возраст, состав, внутреннее строение и физические свойства земной коры, мантии и ядра и происходящие в них физи­ческие. химические и механические процессы. Физика Земли исследует также процессы и явления, возникающие вследствие взаимодействия между Землей и планетами Солнечной системы. В настоящее время решением этих задач занимается целый ряд наук геофизического цикла гравиметрия–учение о силе тяжести и методах ее измерения, сей­смология и сейсмометрия – соответственно учения о земле­трясениях и методах их регистрации; геотермика–учение о тепловых процессах, происходящих на земном шаре, и об энергетике недр нашей планеты; геомагнетизм–учение о магнитном поле Земли, его происхождении, напряженности и вариациях земного магнетизма; геоэлектрика–учение об электрическом поле Земли, распределении и механизме элек­тропроводности в ее недрах; радиометрия – наука, изучаю­щая естественные радиоактивные процессы, которые происходят в недрах Земли. Сейсмология и гравиметрия дают ос­новополагающие представления о внутреннем строении Земли, другие науки уточняют и дополняют сведения о cтpoeнии, составе, агрегатном состоянии земных недр и происхо­дящих в них процессах.

Особо следует сказать о научно-прикладном значении раздела физики твердой Земли – разведочной геофизике. Эта наука предназначена для изучения верхних слоев Земли, по­исков и разведки полезных ископаемых, решения инженерно-геологических, гидрогеологических, экологических и дру­гих задач. Разведочная геофизика базируется на изучении естественных и искусственно создаваемых физических полей Земли. Объектами исследования этой науки являются осадочный чехол, кристаллический фундамент, земная кора и верхняя мантия общей глубиной до 100 км. В последние годы в рамках этой науки стала интенсивно развиваться техногенная геофизика, занимающаяся методами мониторинга, т. е. системой изучения, слежения и контроля за состоянием среды в результате деятельности человека (в том числе кон­троля загрязнения и экологической охраны подземные вод и геологической среды).

Физика гидросферы (гидрофизика) изучает физические свойства воды во всех трех ее агрегатных состояниях и процессы, происходящие в гидросфере. Она рассматривает об­щие процессы в водных объектах и в запасах влаги на поверхности Земли независимо от особенностей данного географического объекта (моря, озера, реки и т. д.). При­менительно к конкретным формам скопления воды гидро­физика подразделяется на физику вод суши и физику моря. Основной предмет исследования физики вод суши – это реки, озера, водохранилища, ледники, подземные и поверхностные воды, а физики моря – моря и океаны.

Задачей физики вод суши является исследование физических процессов: испарения в природных условиях; нагpeвания и охлаждения водоемов, образования, нарастания и исчезновения льда; формирования и таяния снежное покрова и др. Физика моря изучает в основном физические, химические, геологические и биологические процессы, проте­кающие в океанах и морях, закономерности возникновения и развития волн и течений, распространения тепла, звука и света в морской воде, взаимодействия океана и атмосферы и т. д.

Для понимания процессов, происходящих в гидросфере, необходимо знать свойства воды как физическою тела. Поэтому гидрофизика тесно связана с собственно физикой. Из общефизических вопросов гидрофизика изучает молекуляр­ное строение воды во всех ее aгрегaтныx состояниях, физико-механические, радиационные, оптические, акустические, электрические и другие свойства воды, водяного пара, снега и льда.

Физика атмосферы и ближнего космоса в недавнем пpoшлом разделилась на две части – метеорологию и аэрономию. Метеорология изучает состав, строение, свойства воз­душной оболочки Земли и происходящие в ней физические процессы и явления, а также их взаимодействие с земной поверхностью и ближним космосом. Это наиболее разрабо­танная область геофизики. В последние десятилетия наме­тилось деление физики атмосферы на такие самостоятельные научные дисциплины, как динамика атмосферы, физика по­граничного слоя, физика облаков и осадков, учение о лучис­той энергии Солнца и Земли (актинометрия), атмосферная оптика, атмосферное электричество и спутниковая метеорология. Базируются эти дисциплины на метеорологических, актинометрических, аэрологических и радиометеорологических наблюдениях.

С недавних пор при­нято выделять учение о физических и химических процессах в высоких слоях атмосферы и ближнем космосе в особую научную дисциплину, получившую название аэрономии (или физики верхней атмосферы). Методы изучения процессов в высоких слоях атмосферы, отдаленных от земной поверхности на сотни и тысячи километров своеобразны и само их исследование мало связано с изучением атмо­сферы у земной поверхности.

Геофизика изучает процессы и состояние вещества в условиях, весьма отличных от условий обычного физичес­кою эксперимента, так как непосредственное проникновение в глубокие недра Земли пока невозможно. Поэтому основ­ными методами, используемыми в геофизике, являются ме­тоды теоретической физики. Однако не следует думать, что геофизика – это чисто теоретическая наука. Как отрасль естествознания, она основана на экспериментальных геофи­зических данных и полностью опирается на данные практики и эксперимента.

Цель геофизических исследований состоит в получении наиболее достоверных сведений о строении недр Земли, ее водной и воздушной оболочек, в изучении происхождения и развития нашей планеты, что позволяет решить по крайней мере две важнейшие для человечества современные пробле­мы: во-первых, проблему рационального использования природных ресурсов и, во-вторых, разумного использования всех геосфер, влияющих на практическую деятельность человека, Геофизические данные наряду с геологическими и другими исследованиями позволяют заглянуть в прошлое Земли, обрисовать пока в общих чертах историю ее происхожде­ния и развития и в первом приближении дать прогноз на будущее.

Все разделы геофизики имеют самое непосредственное отношение к практической деятельности человека – к разведке и добыче полезных ископаемых, освоению энергии земных недр, океанических глубин и космического простран­ства, прогнозу неблагоприятных явлений, охране окружаю­щей среды и управлению природными процессами. В то же время геофизика представляет другим наукам важные на­учные и практические знания о внутреннем строении Земли, об ее взаимодействиях с окружающими космическими тела­ми – Солнцем, Луной и др., метеорной материей и т. д.

 

3. Основные геофизические понятия и определения. К основным геофизическим понятиям и определениям относятся геофизическое поле и его характеристики – геофи­зический параметр (величина), напряженность, градиент и геофизическое явление.

Геофизическое поле. Геофизика изучает происхождение и строение различных физических полей Земли, или так называемых геофизических полей, и протекающие в ней и в околоземном пространстве физические процессы и явле­ния. Физическое поле–это конкретная форма существова­ния материи, связывающая элементарные частицы вещества друг с другом в единые системы и перемещающие с конечной скоростью действие одних частиц на другие (т. е. осущест­вляющие взаимодействие этих частиц) Физических полей много.

Общим для всех физических полей является постоянное взаимодействие элементарных частиц. Так, в гравитацион­ном и барическом полях происходит взаимодействие масс частиц, электрическом–взаимодействие между движущими­ся электрическими зарядами, геомагнитном–между электри­ческими зарядами и спиновыми (от англ. spin–вращение) носителями магнетизма (электроны, протоны и др.), в сейс­мическом – передача упругих колебаний, возникающих при землетрясениях и искусственных взрывах, в термическом – взаимодействие энергий частиц, в радиоактивном – ядерных излучений. Указанные взаимодействия масс, энергий, колеба­ний, излучений и т. д. происходят как внутри каждого гео­логического тела, каждой горной породы и каждой геосферы, так и между ними, и особенно на границах их соприкосно­вения.

Источниками физических полей являются вся Земля в целом, все геосферы, любое геологическое тело, любая гор­ная порода, любое искусственное сооружение. Все объекты порождают вокруг и внутри себя гравитационное, магнит­ное, тепловое, радиоактивное, электрическое поля, а при ме­ханическом и другом воздействии на них становятся источником полей упругих колебаний. Измеряя величины (пара­метры) внешних физических полей, можно судить об источ­никах этих полей.

Поле может быть стационарным (установившимся), если в каждой точке пространства оно не меняется с течением времени, или нестационарным (неустановившимся), если та­ковое изменение имеет место. Поле может быть скалярным или векторным в зависимости от характера исследуемой величины. Скалярным полем, например, является поле тем­ператур или поле плотностей. В качестве примера векторных полей можно привести поле скоростей, электромагнит­ное поле, поле сил тяготения и т. д.

По происхождению геофизические поля разделяются на естественные и искусственные. Естественное поле представ­ляет собой результат явлений, происходящих в Земле и в земной коре независимо от воздействия на них человека. К естественным полям относятся гравитационное, геомагнитное, электрическое, сейсмическое (возникшее в резуль­тате упругих колебаний при землетрясениях), термическое и поле естественных ядерных излучений. Искусственное поле возбуждается по заданию экспериментатора. Он может управлять такими полями, задавая их наиболее выгодным образом для решения конкретных геофизических задач. Так, в разведочной геофизике для поиска полезных ископаемых и решения ряда научных вопросов широко практикуется соз­дание следующих физических полей электрического, электро­магнитного, сейсмического (поле упругих колебаний, вызван­ное путем взрывов), вторичных ядерных излучений и др.

Геофизические поля позволяют изучать внут­реннее строение и физико-химические свойства Земли, а так­же вскрывать механизм взаимодействия геосфер между со­бой. Они определяют характер, направленность миграции электрически заряженных частиц и дифференциацию вещест­ва по плотности Геофизические поля обусловливают движе­ние воздушных масс и круговорот воды и вещества на Зем­ле, процессы смещения горных пород, их растворение, окис­ление и т. д.

Изучение геофизических полей имеет большое значение для практических целей. Так, установлены тесные зависи­мости между, магнитной активностью, различными природными процессами и самочувствием людей. В частности, об­наружено, что изменения атмосферного давления, темпера­туры воздуха, засухи, похолодания, потепления и другие про­цессы на Земле тесно связаны с ее магнитным полем. С по­мощью геофизических полей в широких масштабах выпол­няется разведка полезных ископаемых

Геофизический параметр. Каждое геофизическое поле определяется своими присущими ему параметрами (величи­нами). Геофизический параметр – это величина, значения которой служат для различия элементов геофизических по­лей. Например, гравитационное поле характеризуют уско­рением свободного падения, термическое –распределением температур и тепловых потоков, геомагнитное – полным век­тором напряженности, магнитным склонением, наклонением и другими элементами магнетизма, электромагнитное – век­торами магнитной и электрической компонент, упругое – вре­менем и скоростями распространения продольных, попереч­ных и другими упругими параметрами, радиационное – ин­тенсивностью естественного или искусственного излучения, барическое – давлением и т. д. В каждой точке и в каждый момент времени геофизические параметры, характеризующие данное поле, имеют вполне определенное значение, неодинаковое в различных частях пространства. Иными словами, гео­физическое поле характеризует пространственное распреде­ление геофизических параметров, которые изменяются во времени.

Величина параметров геофизических полей на земной поверхности и под ней, в море и океане, в воздухе и космосе зависит как от общего строения Земли и околоземного про­странства, так и от происхождения полей и изменения фи­зических свойств горных пород.

Напряженность геофизического поля. Это основная ха­рактеристика геофизических полей, определяющая силу, с которой они действуют на единичный источник (электричес­кий заряд, массу, энергию). Напряженность поля–величина векторная, направленная в сторону действия силы. Если си­ла ориентирована по радиусу от источника, то напряжен­ность считается положительной, а если к источнику – отри­цательной. Напряженность электрического поля, например, выражается в вольтах на метр (В/м), магнитного – в ам­перах на метр (А/м), гравитационного – м/с2 и т. д.

Потенциал геофизического поля. Это работа, проведен­ная внешними силами для внесения единичного положитель­ного источника в данную точку поля из бесконечности при ус­ловии, что напряженность в бесконечности равна нулю. Эта работа придает источнику некоторый энергетический потен­циал U. Между напряженностью геофизического поля Е и потенциалом U имеется связь Е= -gradU. Знак минуса в этом уравнении означает, что градиент направлен в сторо­ну увеличения потенциала, а напряженность – в сторону его падения.

Геофизическое явление. Это определенный физический процесс, сопровождающийся резким (качественным) измене­нием состояния геофизических полей или отдельных их сто­рон. Примеры геофизических явлений: полярные сияния, магнитные бури, грозы, землетрясения, движение магнитных полюсов, образо­вание и таяние льда и снежного покрова, снежные лавины, сели, земные и морские приливы и т. д.

4. Методы геофизических исследований, а их в настоящее время насчитывается более сотни, направлены на получение информации о физико-химическом состоянии и строении Зем­ли в целом и отдельных ее геосфер, на изучение физических процессов и явлений, происходящих на поверхности и в нед­рах земного шара, в атмосфере, гидросфере и околоземном пространстве, а также на установление механизма взаимного влияния геосфер.

Существуют различные классификации методов геофизических исследований. По месту проведения они подразделяются на воздушные, аэрокосмические, наземные, морские и подземные; по видам физических полей и изучаемым физи­ческим свойствам – на гравиметрические, сейсмические, маг­нитные, ядерно-физические, термические и др.; по способу изучения и передачи информации – на дистанционные и не­посредственного измерения на месте.

В зависимости от поставленных целей методы геофизичес­ких исследований делятся на две большие группы. Одна из них включает методы изучения строения, состава и свойств геосфер, другая – методы изучения геофизических полей, ве­личин и явлений.

Методы исследования строения, состава и свойств гео­сфер включают в себя методы прямого и косвенного зонди­рования оболочек Земли и комплексный метод зондирования геосфер из космического пространства.

Метод прямого зондирования позволяет определять ин­тересуемый параметр путем непосредственных инструмен­тальных измерений. Обычно прямые измерения применяют для изучения земной коры (в основном верхних ее слоев), при­земных и реже верхних слоев атмосферы, поверхностных и реже глубоких слоев Мирового океана, верхней толщи ледни­ков. вечной мерзлоты, рек, озер, водохранилищ, снежного и ледяного покрова и т д

При прямом зондировании измерительные приборы от­правляют до определенной высоты (глубины) в соответ­ствующие геосферы Земли с помощью специальных приспособлений – зондов. Для изучения воздушной оболочки Земли измерительные приборы поднимают на шарах-пилотах, ша­рах-зондах (последний рекорд подъема близок к 55 км), спе­циальных самолетах-зондировщиках, метеорологических (до высоты 60–80 км) и геофизических (до высоты 400–500км) ракетах, а также на метеорологических спутниках с высотой орбиты до нескольких тысяч километров. Показания ракетного зондирования передаются по радио. Спутники передают фототелевизионные и инфракрасные изображения облачного покрова по всему земному шару. Количество информации, поступающей со спутни­ков, огромно. Например, за сутки один спутник «Метеор» передает на приемные пункты такое же количество инфор­мации об атмосфере, какое поступает со всех наземных ме­теорологических станций мира за сезон.

С 60–х гг. XX в широко развивается лазерное зондиро­вание атмосферы, позволяющее получать широкий набор сведений о воздушной оболочке Земли и производить измерение ее параметров на любой высоте и в любом направ­лении.

По данным прямого зондирования атмосферы определяют состав воздуха, его температуру, влажность, давление, высоту и толщину облаков, направление и скорость ветра, солнечную и земную радиацию, параметры солнечного ветра, загрязняющие атмосферу вещества, прозрачность воздуха

и др.

Значительно сложнее обстоит дело с прямым зонди­рованием земных недр, гак как современное техническое обо­рудование позволяет изучать физические параметры лишь самого верхнего горизонта твердой оболочки Земли. Одним из способов прямого зондирования земной толщи является бурение. История бурения уходит в глубокую древность. Еще за 4000 лет до н. э. египтяне при постройке пирамид бурили скважины, применяя трубчатые бронзовые наконеч­ники со вставленными в них алмазами. В Китае скважины Для добычи соляных рассолов бурились свыше 2000 лет назад. В России первые скважины с этой же целью были про­бурены в XII в.

Новый этап изучения глубинною строения Земли начался с 70-х гг. XX в. с бурения Кольской в северо-западной части Кольского полуострова, Саатлинской на Кавказе, Тюменской в Западной Сибири и других сверхглубоких скважин. В 1991 г. глубина уникальной Кольской сверхглубокой сква­жины достигла рекордной отметки – 12261 м. Ее диаметр – 245мм. Несмотря на большие трудности, увеличивающиеся при прохождении каждого очередного метра, ее бурение продолжается со средней скоростью 1 км за шесть лет. Пред­положительно оно закончится на отметке 13 км. Впервые в мировой практике получены непосредственные данные, ха­рактеризующие глубинное «дыхание» Земли – поток газов (азота, метана, парообразной ртути и др.), поступающих из глубоких горизонтов. Обнаружено более 20 видов микро­организмов, что подтверждает идею академика В И Вер­надского о существовании жизни на Земле в докембрийскую эпоху – 1,6–1,9 Млрд. лет назад. Более того, при бурении извлечен грунт, по всем параметрам схожий с лунным. Это дает весомый аргумент в пользу тех ученых, которые счи­тают, что Луна –оторвавшаяся в незапамятные времена часть Земли.

В акватории Мирового океана бурение началось с 1968 г. Рекордной по глубине заложения является скважина на склоне Марианской впадины у острова Гуам, океанское дно в пределах которого погружено на 7044м. Самая глубокая скважина проникла ниже дна океана в породах осадочного чехла на глубину 1741м, а в базальтах – до 846м.

Косвенное зондирование основано на изучении геофи­зических явлений и полей, связанных с физическим состоя­нием, химическим составом и структурой внутренних слоев геосфер. Применяют его обычно там, где по тем или иным причинам использование прямых методов измерений.

Физическая природа геофизических полей и явлений различна. Она может быть магнитной, электрической, сейсми­ческой и т. д. В связи с этим выделяют шесть методов кос­венного зондирования земных недр: сейсмический, грави­метрический, магнитометрический, электромагнитный, радио­активный и тепловой.

Комплексное зондирование геосфер из космического пространства – новый перспективный метод изучения Земли, с помощью которого получают сведения о строении, составе, динамике и ритмике геосфер, а также об их взаимодействии.

Методы исследования геофизических полей, величин и явлений. Эта группа методов по существу представляет со­бой полный комплекс методов изучения природы стацио­нарных наблюдений, экспедиционный, экспериментальный и теоретического анализа. Эти методы взаимно дополняют друг друга, но при решении основных геофизических задач глав­ными являются стационарные наблюдения и теоретический анализ.

Метод стационарных наблюдений служит для инстру­ментальных измерений параметров геофизических полей (маг­нитное склонение, напряженность геомагнитного поля, темпе­ратура, атмосферное давление, влажность и т. д.) и для ви­зуальной оценки геофизических явлений (снежные лавины, сели, песчаные бури, полярные сияния и т. д.). Сущность метода заключается в том, что в выбранном месте произ­водятся непрерывные многолетние (многие десятки и даже сотни лет) наблюдения за параметрами того или иного гео­физического поля или явления.

Экспедиционный метод представляет собой комплексное синхронное обследование с помощью инструментальных изме­рений и визуальных наблюдений обширных районов или гео­физических объектов по специально разработанным програм­мам Метод позволяет изучить в основном те физические про­цессы т; явления, которые, различаясь в пространстве, мед­ленно меняются во времени. Экспедиционные исследования дают возможность путем кратковременных наблюдений (от нескольких суток, сезона до нескольких лет), преимуществен­но маршрутного характера, сравнительно быстро охватить большие территории и акватории.

Экспедиционные исследования необходимы при производ­стве различных геофизических съемок: гравиметрической, магнитной, метеорологической, океанологической, гидрологи­ческой и др., позволяющих оценить в пространстве измене­ние того или иного геофизического параметра. Существенный его недостаток полу­ченные в экспедициях материалы характеризуют состояние того или иного геофизического объекта лишь за короткий промежуток времени, относящийся к периоду их работы или иногда к следам, оставленным геофизическими процессами прошлых лет.

Экспериментальный метод позволяет моделировать тот или иной геофизический процесс или явление в лабораторных условиях, чтобы изучить их возникновение, развитие и затухание. На моделях, задавая внешние условия, изучают и сами явления и влияние на них различных факторов. Экс­периментируя, исследователь вмешивается в ход физических процессов, меняет условия, в которых сил протекают, вво­дит одни факторы и исключает другие с целью выяснения причинных связей в явлениях Метод позволяет также подыс­кивать в естественных условиях такое сочетание элементов данного явления, что их наблюдение и измере­ние может привести к получению причинных зависимостей между ними

Экспериментальные исследования получили наиболее широкое распространение в физике атмосферы и гидрофизике. Проведены эксперименты, которые впоследствии подтвердились на практике, по увеличению на ограниченных площадях количества выпадающих твердых и жидких ат­мосферных осадков, по рассеиванию переохлажденных тума­нов, предупреждению образования града, радиолокационно­му обнаружению зарождения и развития снежных лавин, гро­зовых облаков и т. д.

Метод теоретического анализа является завершающим звеном обобщения данных наблюдений и измерений, прово­димых любым из указанных выше методов–стационарным, экспедиционным и экспериментальным Теоретический ана­лиз включает в себя, с одной стороны, использование об­щих физических закономерностей, проявляющихся в про­странственных и временных изменениях элементов геофизических процессов и явлений, а с другой – обобщающую пе­реработку самих измерений и наблюдений. Так, на основании теоретического анализа созданы эволюционная геохимичес­кая модель Земли, модель внутреннего ее строения.

При обобщении измерений и наблюдений в геофизике как и в других точных науках, применяется статистический и физико-математический анализ.

Учебные наглядные пособия, используемые на лекции:

Плакат «Схема структуры геофизики и ее связи с другими науками»

 

 

<== предыдущая лекция | следующая лекция ==>
| Предмет и задачи геофизики. Основные геофизические понятия и определения

Дата добавления: 2014-01-11; Просмотров: 2310; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.80.77.124
Генерация страницы за: 0.012 сек.