![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расклинивающего давления
Электростатическая и молекулярная составляющая Лиофобных дисперсных систем Теоретические основы устойчивости и коагуляции
В основе любой теории устойчивости дисперсных систем лежит соотношение между силами притяжения и отталкивания. Широкое распространение получила теория, учитывающая электростатическую составляющую расклинивающего давления (отталкивание) и его молекулярную составляющую (притяжение). Эта теория хорошо описывает поведение лиофобных ДС, для которых можно пренебречь адсорбционно – сольватным фактором. Эта теория была разработана советским ученым Дерягиным и Ландау (1937-41) и независимо от них голландскими учеными Фервеем и Овербеком, и получила название теории ДЛФО. Суть её: если не учитывать теплового движения частиц, взаимодействие крупных частиц можно рассматривать как взаимодействие между двумя плоско параллельными пластинами, т.е. принять, что линейный размер частиц >> толщины ДЭС. Общая теория взаимодействия между двумя пластинами, приходящаяся на единицу поверхности
где иэ и им = f (h), где h – расстояние между пластинами, тогда п э и п м – электростатическая и молекулярная составляющие расклинивающего давления. Природа сил Ван-дер-Ваальса связана с пм, давление пм обусловлено стремлением системы к уменьшению поверхностной энергии. В теории ДЛФО принято, что давление отталкивания обусловлено только электростатическими силами, поэтому
где
Предполагают, что при взаимодействии пластин происходит деформация только дифф слоя, тогда по теории Гуи – Чепмена
где æ= æ2= Рис. 9.1. Схема распределения элект потенциала между двумя одноименно заряженными частицами при неперекрытых (а) и перекрытых (б) ДЭС слоя
φ меняется от 2φх (при отталкивании) до 0, тогда
По уравнению Пуассона
Подставим значение п э = Учитывая уравнение (9.26) и что h = 2 х, получим зависимость пэ = 2 Для больших потенциалов и больших h эта зависимость более сложна
С о и Z – концентрация и заряд противоионов где
В области низких значений потенциалов пэ (~ Энергия электростатического отталкивания
Проинтегрировав, получим иэ (h)= 2 Для больших потенциалов
Вывод: энергия отталкивания пластин возрастает с уменьшением расстояния h между ними по экспоненциальному закону.
Энергия притяжения между частицами и общие уравнения теории ДЛФО
Рассмотрим зависимость молекулярной составляющей расклинивающего давления – энергии притяжения частиц от расстояния между ними. Взаимодействие между частицами можно определить суммированием взаимодействий между молекулами и атомами в обеих частицах. Такой расчёт был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы к поверхности адсорбента (или частицы) иадс = где С – const, зависящая от природы взаимодействия тел
r – расстояние атома от поверхности частицы
Предположим, что 1 молекула (атом) А внутри левой частицы притягивается к правой пластине с энергией иадс, рассчитываемой по уравнению (9.33), где х будет равно (r + h) = x. им будет равна сумме им всех молекул и атомов левой пластины к правой. Приращение энергии притяжения, отнесенное к единице площади пластины, пропорционально приращению числа молекул (атомов) в цилиндре с основанием, равным единице площади (рис.), т.е.
если или
Из уравнения (9.35) видно, что им обратно пропорциональна квадрату расстояния между ними. По сравнению с молекулами и атомами, где Величина С учетом среды, где взаимодействуют частицы
где тогда
Вывод уравнения (9.35) проводился в предположении, что частицы взаимодействуют в вакууме. Чем сильнее взаимодействует фаза со средой, тем больше Общая энергия взаимодействия между частицами (пластинами) Для области малых потенциалов æ
При больших потенциалах
При взаимодействии сфер частиц и
Уравнения (9.38), (9.39), (9.40) в соответствии с теорией ДЛФО определяют поведение дисперсных систем.
Дата добавления: 2014-01-11; Просмотров: 760; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |