КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Моделирование по схеме непрерывных марковских процессов
Cyщecтвyeт широкий класс систем, которые меняют свои состояния в случайные моменты времени . Как и в предыдущем случае, в этих системах рассматривается процесс с дискретными состояниями . Например, переход объекта от исправного состояния к неисправному, соотношение сил сторон в ходе боя и т. п. Оценка эффективности таких систем определяется с помощью вероятностей каждого состояния на любой момент времени , . Чтобы определить вероятности состояния системы для любого момента времени необходимо воспользоваться математическими моделями марковских процессов с непрерывным временем (непрерывных марковских процессов). При моделировании состояния систем с непрерывными марковскими процессами мы уже не можем воспользоваться переходными вероятностями , так как вероятность "перескока" системы из одного состояния в другое точно в момент времени равна нулю (как вероятность любого отдельного значения непрерывной случайной величины). Поэтому вместо переходных вероятностей вводятся в рассмотрение плотности вероятностей переходов : где - вероятность того, что система, находившаяся в момент времени в состоянии за время перейдет в состояние . С точностью до бесконечно малых второго порядка из приведенной формулы можно представить: Непрерывный марковский процесс называется однородным,если плотности вероятностей переходов не зависят от времени (от момента начала промежутка ). В противном случае непрерывный марковский процесс называется неоднородным. Целью моделирования,как и в случае дискретных процессов, является определение вероятностей состояний системы Эти вероятности находятся интегрированием системы дифференциальных уравнений Колмогорова. Сформулируем методику моделирования по схеме непрерывных марковских процессов.
Пример 2.2. Составить систему дифференциальных уравнений Колмогорова для нахождения вероятностей состояний системы, размеченный граф состояний которой представлен на рис. 2.3.
Решение Очевидно, . Поэтому любое из первых трех уравнений можно исключить, как линейно зависимое. Для решения уравнений Колмогорова необходимо задать начальные условия. Для рассмотренного примера 2.2, можно задать такие начальные условия: , . Однородный марковский процесс с непрерывным временем можно трактовать как процесс смены состояний под влиянием некоторого потока событий. То есть плотность вероятности перехода можно трактовать как интенсивность потока событий, переводящих систему из -го состояния в -е. Такими потоками событий являются отказы техники, вызовы на телефонной станции, рождение и т. п. При исследовании сложных объектов всегда интересует: возможен ли в исследуемой системе установившейся (стационарный) режим? То есть, как ведет себя система при ? Существуют ли предельные значения ? Как правило, именно эти предельные значения интересуют исследователя. Ответ на данный вопрос дает теорема Маркова. Если для однородного дискретного марковского процесса с конечным или счетным числом состояний все , то предельные значения существуют и их значения не зависят от выбранного начального состояния системы. Применительно к непрерывным марковским процессам теорема Маркова трактуется так: если процесс однородный и из каждого состояния возможен переход за конечное время в любое другое состояние и число состояний счетно или конечно, то предельные значения существуют и их значения не зависят от выбранного начального состояния. Например (рис. 2.4), в системе А стационарный режим есть, а в системе В стационарного режима нет: если система окажется в состоянии она не сможет перейти ни в какое другое состояние.
Дата добавления: 2014-01-11; Просмотров: 588; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |