КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Моделирование
Возможность оценки вероятности частостью доказывается теоремой Я. Бернулли: при неограниченном числе однородных независимых опытов с практической достоверностью можно утверждать, что частота события будет сколь угодно мало отличаться от его вероятности в отдельном опыте (Бернулли Якоб 1 - самый старший из восьми представителей этой швейцарской семьи - выдающихся ученых). Чем больше число (число реализаций, число испытаний, число прогонов модели), тем точнее будет оценка вероятности . В рассмотренном примере 3.1 при , , оценки вероятностей поражения цели при различном числе реализаций модели показаны в табл. 3.1.
При , тех же характеристиках рассеивания и других радиусах поражения получим: В одной из последующих тем мы установим количественную связь между числом реализаций модели , требуемой точностью и доверительной вероятностью результата моделирования, в данном случае оценки вероятности . Данный пример иллюстрирует сущность метода имитационного моделирования, который заключается в следующем.
Статистическая обработка и оценка точности результатов моделирования основываются на предельных теоремах теории вероятностей: теореме Чебышева и теореме Бернулли. Рассмотрим еще один пример. Пример 3.2. Транспорт 1 с грузом отправился из пункта А в пункт С через пункт В. Одновременно из пункта D в пункт Е через пункт В отправился транспорт 2. Скорости движения транспортов распределены по нормальному закону с математическими ожиданиями и и стандартными отклонениями и Построить алгоритм имитационной модели (ИМ) с целью определения вероятности встречи транспортов 1 и 2 в пункте В. Расстояние от пункта А до пункта В а от пункта D до пункта В - .Событие встречи считать состоявшимся, если их времена прибытия в пункт В либо равны, либо отличаются на величину, не превышающую . Решение Построим схему движения транспортов 1 и 2 (рис. 3.2). Возьмем две последовательности нормально распределенных случайных чисел: характеристики которых соответствуют матожиданиям и стандартным отклонениям скоростей движения транспортов 1 и 2.
Рассчитаем вероятность встречи: Результаты моделирования при и характеристиках движения транспортов: , , : Очевидно, изложенный процесс имитации легко может быть реализован на компьютере. Представим алгоритмы моделей примеров 3.1 и 3.2 схемами (рис. 3.3 и 3.4). В рассмотренных примерах исследуются различные процессы. Но алгоритмы моделей этих процессов (для сравнения рядом с алгоритмом задачи 3.2 (рис. 3.3) показан и алгоритм задачи 3.1 (рис. 3.4) имеют общую, практически идентичную часть (блоки 1, 5…8, на рис. 3.3 и 3.4 они выделены) и часть, которая непосредственно имитирует исследуемый процесс (блоки 2… 4).
Подобное сходство и различие еще раз подтверждают сформулированную нами ранее сущность имитационного моделирования. Пример 3.3. По объекту наносится не одиночный, а три последовательных ракетных удара. При поражении объекта любой ракетой пуски прекращаются. Остальные условия те же, что и в примере 3.1. Алгоритм ИМ приведен на рис. 3.5. На нем выделены блоки 1, 8…11, выполняющие те же функции, что блоки 1, 5…8 в алгоритмах ИМ на рис. 3.3 и 3.4. Блоки 2…7 непосредственно имитируют нанесение удара по объекту, т. е. выполняют одну реализацию (один прогон модели). В блоке 2 переменной присваивается начальное число пусков ракет. Далее эта переменная используется для организации внутреннего цикла по числу пусков. После каждого пуска значение k уменьшается на 1 (блок 7). При (блок 3) реализация завершается. Завершается она также и при поражении объекта (блок 6). Но при этом предварительно значение переменной увеличивается на . По завершении реализаций рассчитывается оценка математического ожидания вероятности поражения объекта тремя последовательными пусками ракет.
Как отмечалось вначале, название метода - имитационное моделирование не очень удачно в том смысле, что несет в себе тавтологию: моделирование и есть имитация. Однако название прижилось. Очень часто метод называют статистическим моделированием из-за необходимости статистической обработки накапливаемого результата - в случае вероятностных операций. Иногда статистическое моделирование называют "метод Монте-Карло", по городу, где процветает игра в рулетку, исход которой случаен и образуется своеобразным датчиком случайных исходов - рулеткой.
Дата добавления: 2014-01-11; Просмотров: 327; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |