Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегральный признак Коши. Теорема (интегральный признак Коши)




 

Теорема (интегральный признак Коши).

Пусть имеется ряд с положительными монотонно убывающими членами

(1)

и пусть непрерывная, положительная, монотонно убывающая функция, такая что

(2)

Тогда

1) Если несобственный интеграл сходится, то сходится и ряд (1);

2) Если указанный интеграл расходится, то расходится и ряд (1).

Для доказательства рассмотрим геометрическую интерпретацию интеграла и частичных сумм ряда (1).

Рисунок 1 поясняет тот факт, что площадь ступенчатой фигуры равна (т.к. площадь одного прямоугольника равна произведению соответствующего члена ряда- высоты на единицу – длину основания)

.

С другой стороны, площадь криволинейной трапеции, ограниченной графиком функции, прямыми и осью ОХ можно вычислить с помощью определенного интеграла . Имеем неравенство

(3)

На втором рисунке площадь ступенчатой фигуры

.

В результате приходим к неравенству

,

Тогда

(4)

Теперь рассматриваем случай, когда несобственный интеграл сходится, тогда существует конечная величина

Так как

,

с учетом неравенства (4), получаем

.

Следовательно, возрастающая последовательность частичных сумм ряда (1) ограничена сверху, значит, она имеет предел, а ряд, по определению, сходится.

Если интеграл расходится, т.е.

из неравенства (3) будет следовать, что последовательность частичных сумм неограниченно возрастает, следовательно, ряд (1) расходится.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 439; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.