КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Steps for solving a separate first order differential equations
A separable fist order differential equation. Definition 3.1. A first order differential equation is separable if it can be put in the form
or in the equivalent differential form
When we write the equation by this way we say that we have separated the variables.
1. If differential equation is given in the form 2. Separate the variables and write the equation in the form 3. Integrate
Example 3.1. Find the general integral, the general solution and the particular solution satisfying such initial conditions
of the differential equation
Solution. Make substitution
Multiply by
Integrate both parts of the equation
We have found the general integral of the differential equation.
For finding the general solution we need to solve last equation with respect to Because
By properties of the logarithms
We have found the general solution of the differential equation.
Let to find C. Using the initial condition
Substituting
This is the particular solution of the given differential equation.
Example #3.1 (The problem of the change in population over the time.) Solution. From the an example of §1 we have
Using initial condition we will find C
From last equation we can make the conclusion: 1) when 2) when 3) when
Дата добавления: 2014-01-11; Просмотров: 506; Нарушение авторских прав?; Мы поможем в написании вашей работы! |