![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Структура полимеров
Свойства пластмасс Состав пластмасс Полимеры, или пластмассы Пластмассы – искусственные твердые материалы, получаемые на основе органических полимерных связующих веществ. Имеют большую молекулярную массу (свыше 10 000).
1) Связующее – обязательный компонент. Это синтетические смолы или эфиры. Простые пластмассы (органическое стекло, полиэтилен, полипропилен) состоят почти из одного связующего. 2) Наполнители. Их содержание может доходить до 70 %. Могут быть порошковыми (сажа, графит, тальк, древесная мука), волокнистыми (хлопковые, стеклянные, асбестовые волокна), листовыми (бумага, ткани, древесный шпон). Наполнители повышают механическую прочность, снижают стоимость пластмасс и придают им нужные эксплуатационные свойства. 3) Стабилизаторы. Они нужны, чтобы макромолекулы полимеров не изменяли свою пространственную структуру, и свойства пластмасс с течением времени не менялись. 4) Пластификаторы. Их добавляют в количестве до 20 %. Они улучшают формуемость пластмасс, снижают хрупкость. Это обычно олеиновая кислота, стеарин, дибутилметафталат. 5) Отвердители. Их добавляют в пластмассы на основе термореактивных смол в качестве катализаторов отверждения. Это органические перекиси. 6) Специальные добавки – красители, смазки, антистатики, добавки против горения, против плесени и др.
Достоинствами пластмасс по сравнению с другими конструкционными материалами являются: · малая плотность; · высокая удельная прочность σ в/ γ; · химическая стойкость; · электроизоляционные свойства; · теплоизоляционные свойства; · меньшая трудоемкость переработки пластмасс по сравнению с переработкой металлов: изделие и материал создаются одновременно; · меньшее количество отходов, чем при переработке металлов (коэффициент полезного использования материала не менее 0,9); · как правило, не нужны отделочные операции. При замене металлических деталей пластмассовыми масса снижается в 4–5 раз, трудоемкость уменьшается тоже в 4–5 раз, число операций уменьшается в 5–6 раз. Себестоимость снижается в 2–3 раза. Основные недостатки пластмасс: · ограниченная теплостойкость: максимальная температура эксплуатации термопластов – 250 °С (фторопласт-4), а термореактивных пластмасс – около 400 °С (стеклотекстолит); · малая жесткость и вязкость; · склонность к старению, т. е. к изменению свойств с течением времени.
Структурной единицей в полимерах является макромолекула, состоящая из огромного числа одинаковых групп атомов – звеньев. Каждое звено – это измененная молекула исходного низкомолекулярного вещества – мономера. В полимере молекулы мономера объединяются друг с другом и образуют длинные цепочки, в которых атомы соединены ковалентными связями. К примеру, полимер полиэтилен (–CH2–CH2–)n, макромолекулы которого состоят из звеньев CH2, получают полимеризацией n -го числа молекул мономера – газа этилена CH2=CH2. Число n составляет тысячи.
Рис. 104. Схематичные изображения макромолекул полиэтилена и поливинилхлорида Свойства полимеров определяются не только химическим составом, но и строением и взаимным расположением молекул.
У полимеров с разветвленным строением силы притяжения между макромолекулами слабее, полимеры менее прочны (рис. 105, б). Они более плавкие, рыхлые. В полимерах с лестничным строением имеются ковалентные связи между молекулами (рис. 105, в). Они прочные, неплавкие, нерастворимые (могут только размягчаться и набухать). В полимерах с сетчатым строением все линейные участки связаны поперечными ковалентными связями. Все изделие представляет собой гигантскую пространственную молекулу (рис. 105, г). Такие полимеры хрупкие, стойкие к нагреву и растворителям (не размягчаются, не набухают). Это – термореактивные полимеры. Строение линейной макромолекулы
Рис. 106. Схематичное изображение линейной макромолекулы
Энергия ковалентной связи между атомами в главной цепи велика: E связи = 350 КДж/моль. А энергия межмолекулярной связи примерно в 30 раз меньше. Поэтому макромолекулы сравнительно легко могут быть сдвинуты друг относительно друга. Кроме того, макромолекула – гибкая структурная единица: сегменты могут вращаться друг относительно друга, сохраняя валентный угол α (рис. 107). В этом причина нестабильности свойств полимеров: огромные гибкие макромолекулы не могут сохранять раз навсегда заданное пространственное положение.
а б в Рис. 109. Разные формы кристаллов: а – образование кристалла из пластин; б – сферолит; в – фибриллы
Дата добавления: 2014-01-11; Просмотров: 1600; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |