![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Потери удельного импульса в сопле
Потери удельного импульса в ракетных двигателях (в камере ЖРД и РДТТ) Отличие параметров продуктов сгорания (рабочего тела) при действительном рабочем процессе в камере ЖРД, корпусе и СБ РДТТ (горение, расширение) от параметров идеального рабочего процесса учитывается коэффициентом потерь , где – коэффициент потерь в камере сгорания ЖРД (корпусе РДТТ), – коэффициент потерь в сопле. В ЖРД неоднородность распыла и соотношения компонентов топлива по сечению камеры сгорания, неполное сгорание, перенос теплоты в стенку камеры сгорания приводят к отличию действительных параметров продуктов сгорания (рабочего тела), а именно, температуры и состава от рассчитанных по модели равновесной термодинамики. Это отличие учитывается коэффициентом потерь в камере сгорания:
где - действительная характеристическая скорость, - идеальная (расчетная) характеристическая скорость
– коэффициент расхода. Для ЖРД обычно принимают ~ 1. Тогда
где - идеальный (расчетный) расходный комплекс, - определяют экспериментально. В РДТТ, вследствие отсутствия жидких компонентов, нет потерь, связанных с неоднородностью распыла и соотношения компонентов.
Коэффициент потерь удельного импульса в сопле РД представляется в виде:
где - составляющие потерь в сопле. Представление аддитивной суммой не совсем корректно ввиду наличия корреляции между отдельными составляющими, в следствии, к примеру, взаимодействия газовой и конденсированной фаз продуктов сгорания. Кроме того, некоторые составляющие потерь удельного импульса в сопле РДТТ изменяются во времени (из-за разгара минимального сечения, из-за трения ввиду нестационарности температуры стенки). Однако, опыт создания РД маршевых ступеней ракет показал правомерность аддитивного подхода к вычислению удельного импульса двигателей с усреднением по времени работы двигателя нестационарных составляющих. Все виды потерь удельного импульса в сопле можно разделить на две группы. В первую отнесем присущие всем соплам, независимо от состава рабочего тела, а во вторую - связанные со спецификой сопел РДТТ, наличием конденсированной фазы в продуктах сгорания. Группа 1: 1. Потери из-за рассеяния вследствие непараллельности вектора скорости потока в выходном сечении оси профилированного сопла. Наиболее корректно эту составляющую потерь следует вычислять по зависимости
где – газодинамическая функция приведенного полного импульса потока (отношение полного импульса потока в выходном сечении сопла к полному импульсу потока в минимальном (критическом) сечении сопла), рассчитываемая по одномерной теории. - безразмерный интеграл сил давления, вычисляемый в процессе расчета двумерного поля течения в сопле. Для приближенных оценок используется формула
полученная по результатам численных исследований течений в соплах.
В конических соплах , при 2. Потери на искривление звуковой линии в минимальном сечении вследствие скругления угловой точки технологическим радиусом r2 возникают вследствие возникновения малых возмущений в сверхзвуковой области
где относительный радиус скругления угловой точки (величина может достигать значения 0,5). В соплах с радиусным скруглением горловины этот вид потерь отсутствует. 3. Потери из-за разгара минимального сечения сопла РДТТ возникают вследствие уменьшения степени расширения сопла по мере уноса материалов горловины. При адиабатическом истечении продуктов сгорания в пустоту, где - газодинамическая функция, определяющая отношение плотности потока импульса к давлению торможения (т. е. к ее значению в заторможенном газе). Тогда потери импульса в момент окончания работы двигателя определит зависимость
где индексом «0» обозначены значения степени расширения сопла и газодинамической функции при начальном значении диаметра сопла. Чтобы избежать вычислений значений газодинамической функции при начальном значении диаметра минимального сечения и конечном значении, используем эмпирическое соотношение для расчета среднего за время работы двигателя значения потери удельного импульса из-за разгара диаметра минимального (критического) сечения (6.13) В зависимости (6.13) 4. Потери из-за искажения контура вследствие технологических погрешностей изготовления и уноса материалов тепловой защиты тракта сопла РДТТ оценены по результатам параметрических расчетов монодисперсных двумерных течений и приняты постоянными. 5. Потери из-за утопленности сопла РДТТ в канал заряда оценивают по соотношению, полученному обработкой экспериментальных данных
где – давление в корпусе двигателя, МПа, - отношение длины утопленной части сопла к длине канала заряда, - диаметр минимального (критического) сечения сопла, мм. 6. Потери из-за трения потока оценивают с помощью интегральной характеристики пограничного слоя на стенке - относительного значения, толщины потери импульса в выходном сечении сопла
Вычисление значения толщины потери импульса на срезе сопла требует применения сложных моделей теории пограничного слоя на проницаемой шероховатой стенке, поэтому используют приближенные соотношения. Например, обобщающая зависимость, учитывающая и шероховатость поверхности тракта сопла: (6.14) где - относительная величина эквивалентной песочной шероховатости стенок. Вдув газообразных продуктов пиролиза матрицы и окисления углерода поверхностного слоя композиционных материалов тепловой защиты тракта сопла РДТТ в общем случае приводит к уменьшению трения на стенке. Необходимость реализации сложных алгоритмов при расчете потерь на трение возникает при создании конструкции сопла высотной ступени с насадком из углерод-углеродных композиционных материалов. Пиролиз матрицы у таких материалов не происходит, унос массы также отсутствует ввиду невысокой температуры стенки и низкого уровня конвективного тепломассообмена. Поверхность данного участка сопла является непроницаемой. Высокая теплопроводность таких материалов при отсутствии внешней теплоизоляции приводит к низкой температуре стенки и увеличению трения вследствие роста значения плотности газа на поверхности сопла. К тому же для сопла большой степени расширения характерно значительное увеличение толщины пограничного слоя по мере приближения к срезу, и режим проявления шероховатости может не наступить, т.е. (уменьшение трения при больших числах Маха в сочетании с малыми значениями плотности газа). Поэтому оценку потерь на трение по зависимости (6.14) следует считать верхней. 7. Потери вследствие отвода теплоты в стенку сопла и окружающую среду. Необратимый отвод теплоты приводит к уменьшению температуры рабочего тела и возникновению потери удельного импульса вследствие уменьшения скорости потока на срезе сопла. В принятой концепции поправочных множителей к значению удельного импульса адиабатического течения идеального газа потери удельного импульса на отвод теплоты в стенку сопла определит выражение:
где уменьшение температуры продуктов сгорания вследствие отвода теплоты можно оценить по формуле:
в которой - плотность теплового потока в стенку (рассчитывается по параметрам рабочего тела без потерь энергии), - площадь поверхности теплообмена, -расход продуктов сгорания при адиабатическом течении газа. Этот вид потерь следует учитывать только в небольших двигателях, так как даже для маршевых двигателей высотных ступеней ракет эти потери обычно не превышают 0,15%. Поэтому обычно их не учитывают ввиду малости и связанности с потерями на трение, которые оценены по (6.14) как верхний предел. 8. Потери из-за химической неравновесности реакций в газовой фазе продуктов сгорания оценивают по результатам расчетов параметров потока по моделям равновесного и замороженного течений. С ростом давления торможения и диаметра минимального (критического) сечения эти потери уменьшаются вследствие увеличения времени пребывания частиц рабочего тела в камере сгорания (корпусе), температуры торможения и скоростей химических реакций из-за нарастания концентраций компонентов. Для современных РД потери на химическую неравновесность можно оценить по зависимости:
размерность диаметра минимального (критического) сечения – мм. Группа 2: 9. Потери в сопле РДТТ из-за скоростного и температурного запаздывания частиц относительно несущей газовой фазы в соответствии с данными: (6.15) где основная зависимость от диаметра минимального (критического) сечения сопла, диаметра частиц и доли конденсата в потоке имеет вид:
где диаметр частиц - в мкм, диаметр минимального (критического) сечения сопла - в мм. Зависимость от давления торможения имеет вид и означает увеличение потерь при уменьшении давления торможения вследствие уменьшения коэффициента сопротивления частиц из-за разреженности газа. Зависимость от угла наклона контура за угловой точкой имеет вид и означает, что с ростом эффективного угла контура увеличиваются потери из-за сокращения длины участка разгона частиц за горловиной. Эффективный угол наклона контура определяют по формуле. Зависимость от степени расширения сопла имеет вид и учитывает уменьшение запаздывания частиц по скорости от газа с ростом степени расширения из-за уменьшения градиента скорости газа. Если сопло выполнено без угловой точки, а имеет радиусное скругление горловины, то в (6.15) необходимо учесть дополнительный сомножитель, где. С ростом величины происходит удлинение горловины сопла и уменьшение градиента скорости газа, что, в свою очередь, приводит к уменьшению запаздывания частиц от газа. 10. Потери в сопле РДТТ из-за отсутствия кристаллизации частиц конденсированной фазы (отсутствие подвода теплоты к газу при достижении частицей температуры кристаллизации). Приближенная зависимость имеет вид
11. Потери в сопле РДТТ вследствие выпадения частиц конденсата на стенки сопла в современных соплах можно не рассматривать ввиду выбора профиля, исключающего инерционное осаждение частиц в концевой части. Однако при создании сопловых блоков двигателей стартовых ступеней имеет смысл выбирать профиль с малыми значениями угла, допускающий выпадение частиц на концевую часть сопла - уменьшение потерь удельного импульса из-за рассеяния и запаздывания частиц может компенсировать увеличение массы конструкции концевого участка вследствие эрозии материалов. В общем случае необходимо решать задачу параметрической оптимизации для достижения максимума конечной скорости ступени. При этом необходимо рассчитывать величину унесенного слоя композиционных материалов вследствие высокоскоростного многократного соударения с частицами конденсированной фазы для выбора толщин материалов тепловой защиты. Кроме того, происходит потеря удельного импульса вследствие выпадения частиц на стенку. Приближенно величину этой потери можно оценить по зависимости:
где - площадь концевой части, подверженной осаждению частиц, - осевая и нормальная к поверхности осаждения составляющие скорости частиц, - расход продуктов сгорания. Оценки потерь удельного импульса вследствие выпадения частиц на концевую часть сопла двигателя стартовой ступени показали, что величина их может превышать 1%. По результатам натурных испытаний РД получают обобщенные эмпирические зависимости потерь удельного импульса по результатам обработки экспериментальных данных в зависимости от основных параметров двигателей. Характерный пример такой зависимости для РДТТ:
(6.16) где – доля алюминия в топливе; – радиус скругления входа в горловину; давление торможения - МПа; диаметр минимального сечения - мм. В США используют соотношение: , в котором величины и их размерности аналогичны (6.16). Такие зависимости в ряде случаев позволяют оценить суммарные потери удельного импульса двигателя без учета потерь на химическую неравновесность при неопределенности с потерями на отсутствие кристаллизации частиц конденсированной фазы. При проведении проектных расчетов можно использовать экспериментальные данные по коэффициентам потерь, приведенные в табл. 6.1.
Таблица 6.1
Действительный удельный импульс вычисляется из соотношения
где - идеальный (расчетный) удельный импульс. Действительные значения площади минимального (критического) сечения и выходного сечения сопла определяются из выражений
где - идеальные (расчетные) значения. Действительное значение коэффициента тяги в пустоте определяется так: , где – идеальное (расчетное) значение. Действительное значение расхода компонентов определяется из соотношения:
где – идеальное (расчетное) значение.
Дата добавления: 2014-01-11; Просмотров: 2154; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |