Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Архитектура связей

Типы обучения нейросети

Таблица 1. Сравнение режимов обучения нейросетей

Вид обучения: С "учителем"   С "подкреплением"   Без "учителя"  
Что подается в качестве обучающих примеров   Набор пар входов-выходов   Оценка выходов сети   Только набор входных значений  
Что требуется от сети Найти функцию, обобщающую примеры, в случае дискретных - классифицировать входы. В целом – научиться реагировать схожим образом в схожих ситуациях. Научиться заданной “правильной” линии поведения. Найти закономерности в массиве данных, отыскать порождающую данные функцию распределения, найти более компактное описание данных.  

 

Способ обучения, при котором действительный выход нейросети сравнивают с эталонным, называют обучением с учителем. Сеть обучается на наборе примеров (пар входов-выходов).

Иногда выходная информация известна не полностью. Например, вместо эталонных ответов известно лишь хуже или лучше данная конфигурация сети справляется с задачей (вспомним детскую игру “холоднее-горячее”). Этот тип обучения называют обучением с подкреплением (reinforcement learning).

Вообще говоря, возможен и такой режим обучения, когда желаемые значения выходов вообще неизвестны, и сеть обучается только на наборе входных данных:

Такой режим обучения сети называют обучением без учителя. В этом случае сети предлагается самой найти скрытые закономерности в массиве данных. Так, избыточность данных допускает сжатие информации, и сеть можно научить находить наиболее компактное представление таких данных, т.е. произвести оптимальное кодирование данного вида входной информации.

На способ обработки информации решающим образом сказывается наличие или отсутствие в сети петель обратных связей. Если обратные связи между нейронами отсутствуют (т.е. сеть имеет структуру последовательных слоев, где каждый нейрон получает информацию только с предыдущих слоев), обработка информации в сети однонаправлена. Входной сигнал обрабатывается последовательностью слоев, и ответ получается через число тактов, равное числу слоев.

Наличие же обратных связей может сделать динамику нейросети (называемой в этом случае рекуррентной) непредсказуемой. В принципе, сеть может "зациклиться" и не выдать ответа никогда. Вообще говоря, то, что нейроны в рекуррентных сетях помногу раз принимают участие в обработке информации, позволяет таким сетям производить более разнообразную и глубокую обработку информации. Но в этом случае следует принимать специальные меры к тому, чтобы сеть не зацикливалась (например, использовать симметричные связи, как в сети Хопфилда, или принудительно ограничивать число итераций).

Таблица 2. Сравнение архитектур связей нейросетей

Сравнение сетей: Без обратных связей (многослойные)   С обратными связями  
Преимущества   Простота реализации. Гарантированное получение ответа после прохождения данных по слоям.   Минимизация размеров сети - нейроны многократно участвуют в обработке данных. Меньший объем сети облегчает процесс обучения.  
Недостатки   Требуется большее число нейронов для алгоритмов одного и того же уровня сложности. Следствие - большая сложность обучения.   Требуются специальные условия, гарантирующие сходимость вычислений.  

 

<== предыдущая лекция | следующая лекция ==>
Многослойные искусственные нейронные сети | Нейропарадигмы
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 568; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.