Рассмотрим один нейрон в скрытом слое, предшествующем выходному слою. При проходе вперед этот нейрон передает входной сигнал нейронам в выходном слое через соединяющие их веса. Во время обучения эти веса функционируют в обратном порядке, пропуская величину ошибки от выходного слоя назад к скрытому слою. Каждый из этих весов умножается на величину δqk нейрона, к которому он присоединен в выходном слое. Величина δpj, необходимая для нейрона скрытого слоя, получается суммированием всех таких произведений и умножением на производную сжимающей функции (см. рис. 16):
δ p,j=OUTp,j(1- OUTp,j)[ ∑ δ q,k wpq,k] (13)
Когда значение δ p,j получено, веса, питающие первый скрытый уровень, могут быть подкорректированы с помощью уравнений подстройки весов выходного слоя, где индексы модифицированы в соответствии со слоем.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление