КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Базис и координаты вектораB А A+b Линейные операции над векторами. Определение 5.4. Суммой a + b векторов a и b называется вектор, идущий из начала вектора а в конец вектора b, если начало вектора b совпадает с концом вектора а. b a Замечание. Такое правило сложения векторов называют правилом треугольника.
Свойства сложения: Свойство 1. a + b = b + a. Доказательство. Приложим векторы а и b к общему началу и рассмотрим параллелограмм AOBC. Из определения 5.4 и треугольника ОВС следует, что ОС= b+a, а из треугольника ОАС – ОС= а+b. Свойство 1 доказано. В а С Замечание. При этом сформулировано еще одно правило b b сложения векторов – правило параллелограмма: сумма a+b= векторов a и b есть диагональ параллелограмма, построенно- =b+a го на них как на сторонах, выходящая из их общего начала. О А Свойство 2. (a+b)+c=a+(b+c). b Доказательство. Из рисунка видно, что A a + b B (a+b)+c =(OA+AB)+BC=OB+BC=OC, a a+(b+c)=OA+(AB+BC)=OA+AC=OC. Свойство 2 доказано. b+с O c С Свойство 3. Для любого вектора a существует нулевой вектор О такой, что a +О=а. Доказательство этого свойства следует из определения 5.4.
Свойство 4. Для каждого вектора a существует противоположный ему вектор a / такой, что а+а /=О. Доказательство. Достаточно определить a / как вектор, коллинеарный вектору a, имеющий одинаковую с ним длину и противоположное направление.
Определение 5.5. Разностью а – b векторов а и b называется такой вектор с, который в сумме с вектором b дает вектор а.
a a-b
Определение 5.6. Произведением k a вектора а на число k называется вектор b, коллинеарный вектору а, имеющий модуль, равный | k || a |, и направление, совпадающее с направлением а при k >0 и противоположное а при k<0. Свойства умножения вектора на число: Свойство 1. k( a + b ) = k a + k b. Свойство 2. (k + m) a = k a + m a. Свойство 3. k(m a ) = (km) a. Следствие. Если ненулевые векторы а и b коллинеарны, то существует такое число k, что b = k a.
Определение 5.7. Линейной комбинацией векторов а1, а2,…,аn называется выражение вида: k1 a1 + k2 a2 +…+ kn an, (5.1) где ki – числа.
Определение 5.8. Векторы а1, а2,…,аn называются линейно зависимыми, если найдутся такие числа k1, k2,…, kn, не все равные нулю, что соответствующая линейная комбинация векторов равна нулю, т.е. k1 a1 + k2 a2 +…+ kn an = 0. (5.2) Если же равенство (5.2) возможно только при всех k i = 0, векторы называются линейно независимыми.
Замечание 1. Если система векторов содержит нулевой вектор, то она линейно зависима.
Замечание 2. Если среди n векторов какие-либо (n -1) линейно зависимы, то и все n векторов линейно зависимы.
Замечание 3. Необходимым и достаточным условием линейной зависимости двух векторов является их коллинеарность.
Определение 5.9. Векторы называются компланарными, если они лежат либо в одной плоскости, либо в параллельных плоскостях.
Замечание 4. Необходимым и достаточным условием линейной зависимости трех векторов является их компланарность.
Замечание 5. Любые четыре вектора в трехмерном пространстве линейно зависимы.
Определение 5.10. Два линейно независимых вектора на плоскости (или три линейно независимых вектора в пространстве) образуют базис, если любой вектор плоскости (пространства) может быть представлен в виде их линейной комбинации. Числовые коэффициенты этой линейной комбинации называются координатами данного вектора в рассматриваемом базисе: если a, b, c – базис и d = k a + m b + p c, то числа k, m, p есть координаты вектора d в базисе a, b, c.
Свойства базиса:
Определение 5.11. Проекцией вектора АВ на ось u называется длина направленного отрезка А/В/ оси u, где А/ и В/ - основания перпендикуляров, опущенных из точек А и В на ось u. Обозначение: прu а.
Свойства проекции:
Замечание. Свойства 2 и 3 назовем линейными свойствами проекции.
Рассмотрим декартову систему координат, базис которой образуют в пространстве три попарно ортогональных единичных вектора i, j, k. Тогда любой вектор d может быть представлен в виде их линейной комбинации: d = X i + Y j +Z k. (5.3)
Определение 5.12. Числа X, Y, Z называются декартовыми координатами вектора d.
Замечание. Декартовы координаты вектора равны его проекциям на оси Ох, Оу и Оz декартовой системы координат.
Определение 5.13. Косинусы углов, образованных вектором о осями декартовой системы координат, называются его направляющими косинусами.
Свойства направляющих косинусов:
Дата добавления: 2014-01-11; Просмотров: 1698; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |