Теорема 2.4. Вероятность появления хотя бы одного из попарно независимых событий
А1, А2,…, Ап равна
р (А) = 1 – q1q2… qn, (2.9)
где qi – вероятность события , противоположного событию Аi.
Доказательство.
Если событие А заключается в появлении хотя бы одного события из А1, А2,…, Ап, то события А и противоположны, поэтому по теореме 2.2 сумма их вероятностей равна 1. Кроме того, поскольку А1, А2,…, Ап независимы, то независимы и , следовательно, р () = . Отсюда следует справедливость формулы (2.9).
Пример. Сколько нужно произвести бросков монеты, чтобы с вероятностью не менее 0,9 выпал хотя бы один герб?
Решение. Вероятность выпадения герба при одном броске равна вероятности противопо-ложного события (выпадения цифры) и равна 0,5. Тогда вероятность выпадения хотя бы одного герба при п выстрелах равна 1- (0,5) п. Тогда из решения неравенства 1- (0,5) п > 0,9
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление